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The risks, benefits, and consequences of pre-publication moderation: Evidence from
17 Wikipedia language editions

ANONYMOUS AUTHOR(S)

Many online communities and peer production communities rely on on post-publication moderation of incoming contributions.
Contributors—even those that are perceived as being risky—are allowed to publish material openly and immediately. Only after
being made public is material checked, reviewed, and moderated. An alternative arrangement involves moderating all content before
publication. A range of communities have argued against pre-publication review by suggesting that it makes contributing less
enjoyable for new users and that it will distract established community members with unnecessary moderation work. We present an
empirical analysis of the effects of a pre-publication review system called FlaggedRevs that was deployed by numerous Wikipedia
language editions. We collected panel data from eighteen large wikis and test a series of hypotheses related to the effect of the system
on indicators of activity levels and average quality within the affected communities. While there is some evidence that the system
discouraged participation of unregistered users after taking down their substandard contributions, it did not make an impact on new
and returning registered editors. Our findings imply that concerns about the negative effects of pre-publication moderation systems
on the quality, productivity, and sustainability of communities may be small.
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1 INTRODUCTION

Successful commons-based peer production communities struggle tomaintain the quality

of the knowledge bases they construct against rising tides of vandalism, trolls, and spam

[26]. More recent work, has shown that moderation systems can result in enormous

collateral damage to communities. For example, rising vandalism in English Wikipedia

led to increased rates of newcomer rejection and, ultimately, to a decreased contributor

base [20, 21, 28, 43]. This dynamic appears to occur in a range of similar peer production
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
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2 Anon.

contexts [22, 48]. Despite the costs, some form of content moderation is necessary to

help enforce community or platform policies by monitoring and nullifying damaging

contributions [17, 29, 51]. An important question for social computing scholars and

designers asks which types of moderation systems can provide strong protection while

minimizing harm to communities.

One important distinction between types of moderation systems used in social comput-

ing systems reflects when moderation occurs relative to publication of user-contributed

information. Many platforms use post-publication moderation, where content contributed

by users is made instantly visible online and remains there until it is changed or removed

by other users or automated systems. Although less common, pre-publication moderation

involves attempting to prevent malicious contributions proactively. While this brings the

obvious benefit of mitigating threats of vandalism, these systems can require a large op-

erational cost to effectively assess all contents submitted in a timely manner. As a result,

pre-publication review systems are typically applied only to a subset of contributions

from individuals perceived as less trusted or higher risk by community administrators

(e.g., users contributing without accounts or new users).

That said, the choice to deploy pre-publication moderation systems in communities

remains controversial with some communities adopting it and many others rejecting it.

For example, many of the largest communities on Wikipedia (including English) have
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The risks, benefits, and consequences of pre-publication moderation: Evidence from 17 Wikipedia language editions3

discussed the use of these systems at length but ultimately rejected them.1 While there is

some agreement that additional quality assurance mechanisms can be helpful in fighting

vandalism, there is deep concern about collateral damage from these systems. Howmuch

attempted vandalism will a shift from post-publication to pre-publication moderation

deter? How many vandals will be able to work around the system? How many good

contributions will never occur in a pre-publication moderation context that would have

happened in a post-publication moderation context?

In this paper, we present a quantitative evaluation of a pre-publication review system

called FlaggedRevs and its deployment on the 17 Wikipedia communities. Using data

available from these wikis, we used a community-level panel data interrupted times series

analysis (ITS) analysis as well as a user-level general linear mixed model (GLMM) to

identify the effects of FlaggedRevs on several different outcomes. Measured in a variety

of ways, we find that the introduction of pre-publication moderation has a surprisingly

minor impact. While the system successfully prevented many low quality contributions

from ever being visible to the public, it did not appear to affect the volume or quality of

contributions overall, contributions made by users with accounts, or the return rate of

newly registered contributors. Although the system caused a decline in the productivity

of unregistered users, we cannot rule out the idea that at least some of these users may

1https://meta.wikimedia.org/wiki/Talk:Flagged_Revisions
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simply have created accounts in order to build trust within the new system. Our analysis

supports the argument that some level of pre-publication moderation for contributions

from high-risk users may be a useful approach for communities seeking to maintain

order while minimizing collateral damage.

This work makes several contributions to the social computing literature. First, we con-

tribute to theories of peer production by formally articulating a set of novel theoretical

claims related to the effects of pre-publication moderation systems based on prior work

and conversations in communities. Second, our work makes a series of empirical contri-

butions by testing these claims as hypotheses. Our work makes empirical contribution

to the study of peer production systems and Wikipedia by evaluating the FlaggedRevs

pre-publication review system in 17 different Wikipedia communities. Ultimately, we

argue that, contrary to expectations and most of our hypotheses, the system does not

raise transaction costs sufficiently to inhibit participation by the community as a whole

nor does it measurably improve the quality of the wikis on which it is implemented.

2 BACKGROUND

Peer production describes a widespread and influential type of online collaborative

production that involves the mass aggregation of small contributions from diversely

motivated individuals working together over the Internet [5]. Although the most famous
Manuscript submitted to ACM
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examples of peer production include free/libre open source software and Wikipedia, the

model of production also describes collaborative filtering on sites like Reddit, Q&A on

sites like Quora, and the activity on a range of other knowledge bases. Theorized first

in 2002 by Benkler [3, 4], peer production is characterized by extremely low transaction

costs made possible by advances in new communication technology. In other words,

peer production is possible because it extremely easy to contribute to relative to existing

models of organizing production (i.e., markets and firms). This allows contributions from

people who are often only slightly motivated to participate. Because it is often very easy

to contribute, communities can attract large numbers of of contributions from a diverse

sense of perspectives [4, 6]. The low barrier to entry also helps stimulate participation

across both groups of unregistered and registered users [2], and introduces more diverse

perspectives from a wider pool of participants [1, 23]. Classical theories of public goods

and collective action have shown that low participation costs help communities achieve

critical mass [32], facilitate fluid or open community boundaries [37], and attract greater

diversity of perspectives [4, 6, 23].

Prior research on peer production communities has shown that malicious actions such

as trolling, spamming and flaming can undermine a community’s purpose and drive

members away [12, 26, 30, 31]. To minimize these harmful behaviors, communities rely

on teams of volunteer and professional moderators who review content submitted by

Manuscript submitted to ACM
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users and review low quality or norm-violating material [41, 42]. When the presence of

harmful or repetitive content is negated, a healthy environment can encourages positive

social norms and continued participation from existing contributors and motivates new

participants to join [34]. Indeed, a study by Wise et al. shows that “a moderated online

community elicited greater intent to participate than an unmoderated community” [51].

In peer production sites, most moderation is post-publication moderation in that it

occurs after content has been submitted and made fully public. Post-publication moder-

ation is often considered as preferable from an user experience perspective for several

reasons. First, it is relatively low-cost because not all content must be monitored. It is

also potentially efficient because more attention will naturally be given to more popular

content. Finally, it is thought to be effective at eliciting contributions because it allows

for real-time engagement for everyone leading to faster collaboration and an immediate

sense of belonging and self-efficacy in contributors who see their contribution made

“live” immediately. When edits are immediately reflected and new information can be

updated instantly, it incentivizes writers to continue contributing to keep the informa-

tion updated in a timely manner [50]. On the other hand, post-publication moderation is

entirely reactive and is always at least partially ineffective in fighting vandalism attempts

damage is always done before it is taken down—even if only briefly.
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However, as communities grow, content governance can become more labor intensive

and complicated. Higher volumes of contributions naturally come with higher volume

of low quality contributions, whether intentional or not. The reactive nature of post-

publication moderation systems means that malicious behaviors such as trolling, flaming

and spamming can potentially go unnoticed and lead to low satisfaction among users [8].

In order to maintain the quality and efficiency of the community, additional measures

are sometimes considered to weed out malicious behaviors. Pre-publication moderation is

an alternative approach where contributors must wait for their work to be explicitly ap-

proved by a moderator before becoming visible to the general public. Because this review

work by experienced or trusted community members can be onerous, this moderation

approach is frequently focused on monitoring only certain groups of users that have not

yet earned the trust of the community due to an insufficient contribution history. These

would be the group of unregistered users (i.e. those who contribute to the site without

registering for an account with a stable identification) or newly registered users.

For example, Quora—a popular crowdsourcedQ&A site—began requiring contributions

from unregistered users to be reviewed and approved before being published in 2017.2 Al-

though English Wikipedia uses post-publication review almost exclusively [15], German

Wikipedia—the second largest version in terms of article volumes and active contributors

2https://techcrunch.com/2017/02/10/qa-site-quora-clamps-down-on-anonymity-will-review-content-before-publishing-restricts-actions/
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8 Anon.

of the encyclopedia—designed and deployed a pre-publication moderation system called

Flagged Revisions (more commonly known as FlaggedRevs) to require that contributions

made by unregistered or new and “untrusted” registered users to be reviewed and ap-

proved (i.e., “flagged”) before they were visible in the version of the article shown to

most viewers. The FlaggedRevs system has subsequently been deployed in twenty-three

other wikis on Wikipedia.

Because pre-publication review is often only used to review contributions from rela-

tively high-risk or untrusted users, its effects are likely uneven across users. In particular,

we separately hypothesize its effect across three groups of users: (a) affected users whose

work is subject to review (typically new or unregistered users), (b) users whose work

is not subject to review (typically established users with a history of contributing) who

will often be involved in reviewing the contributions from the former group, and (c) the

community overall.

Pre-publication review is designed to minimize damage caused by bad actors and

in turn discourage antisocial behaviors by encourage positive examples and enforcing

standard social norms [44, 46]. We assess whether the system is indeed functioning as

intended, offering a single hypothesis in three parts: pre-publication moderation will be

associated with a smaller number of low quality contributions from from affected users

that are made visible to the public (H1a). Because the work of unaffected users are not

Manuscript submitted to ACM
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subject to review, we expect that pre-publication moderation will not be associated with a

a difference in the number of low quality contributions from from unaffected users that are

made visible to the public (H1b) (i.e., we expect a null effect). Further, we also expect to

see an overall reduction in the number of substandard contributions are made public. In

other words, pre-publication moderation will be associated with a smaller number of low

quality contributions overall that are made visible to the public (H1c).

In a related sense, we anticipate that pre-publication moderation will be associated with a

higher contribution quality from the less experienced and untrusted group (H2a). Once again,

we also expect a null effect for the unaffected user group, stating that pre-publication

moderation will not significantly affect the quality of contributions from established users

(H2b). Finally, we also expect that pre-publicationmoderation will be associated with higher

contribution quality of the community overall (H2c).

Next, we turn to research that has shown that additional quality control policies may

negatively affect the growth of a peer production community [20, 21]. For example, a

higher barrier to entry is likely to deter participation[35, 36]. Collateral damage in the

form of deterred or rejected good faith or quality contributions is difficult to measure

but if frequently cited by community members as a concern with moderation systems in

general, and with pre-publication review systems in particular.
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A range of past social computing studies suggests that additional quality control

policies tend to negatively affect the growth of a peer production community, as new

users are particularly sensitive to the feedback they receive for their good-faith, but low

quality, contributions [13, 20–22]. Our third set of hypotheses anticipates that the benefits

described in H1 and H2 come with a trade-off related to the types of collateral damage

shown in the evaluation of other moderation systems. Because of the reduced sense

of efficacy associated with contributing, we anticipate that pre-publication moderation

systems will be associated with reduced contributions from affected users (H3a).

Although the intuition is less clear, we also believe that previous work also suggests

that a pre-publication systemwill also negative effect the contribution rate of established

users whose contribution are not directly subjected to review. There are several possible

explanations for this scenario. First, more experienced contributors are required to review

content so the deployment of the system may increase the demands on these users times

and compete for their time. Additionally, the systemmay discourage members of affected

groups from returning to the site to eventually become veteran members. As a result,

we hypothesize that pre-publication moderation systems will be associated with reduced

contributions from members of unaffected users (H3b). Since both our previous hypotheses

point to reduced contribution rates, we also suggest that pre-publication moderation

Manuscript submitted to ACM
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systems will be associated with reduced contributions from members of the community

overall (H3c).

Finally, we considered that contributors of user-generated content sites often seek

rewards from their peers’ recognition of their work, either by feedback or status [10, 11].

Reducing this immediate reward from contributors might diminish their enthusiasm

for long-term commitment [18]. Attracting and retaining new users is very important

for peer production communities to maintain and expand their growth [21], and the

higher barrier to entry combined with delayed intrinsic reward might be disheartening

enough to drive these newcomers away. Different from our previous hypotheses, our

fourth hypothesis focuses solely on new users. We anticipate that the deployment of a

pre-publication moderation system would negatively affect the return rate of newcomers

(H4).

Spoiler alert: with the exception of H1, we found null effects for most of our hypotheses,

suggesting that the theories underpinning our hypothesis development might require

revisiting.
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3 EMPIRICAL SETTING

As one of of the largest peer production websites on the Internet, Wikipedia describes

itself as “the free encyclopedia that anyone can edit.”3 Wikipedia allows editing by

the general public with very little in the way of additional barriers. Most visitors can

edit the large majority of Wikipedia pages without creating an account, providing an

email address, or establishing a persistent identity. Unfortunately, the ease of editing

not only attracts legitimate editors to participate, but also can allows malicious and

bad-faith participants to undermine the effort to maintain a high quality of content [45].

Wikipedia relies on transparency of all content updates to defend against the insertion

of problematic information: every edit that is made is recorded, including the state of

the article before and after the edit, and available for public review. Revisions found to

violate policy may be removed and the state of the article easily reverted to the previous

version. However, this approach of open editing privileges, transparency, and the revert

to previous versions carries some risks. While larger communities may be able to field

sufficient volunteer resources to fight vandalism and build, customize, and test advanced

automated anti-vandalism tools [16? ], volunteers in smaller communities may not have

the time to expend on this effort. Automated tools to help protect the 321 different

language editions of Wikipedia are an active area of research but the task is far from

3https://en.wikipedia.org
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complete [19]. Uncaught vandalism, hoaxes, and disinformation could remain hidden for

extended amount of time and detrimentally affect the community’s reputation and its

sustainability [27]. Consequences of uncaught vandalism are not unique to Wikipedia –

for example, when the Los Angeles Times site experimented with a new online feature

that “allowed readers to rewrite an editorial on the newspaper’s website”, they cancelled

it soon after, due to rampant vandalism attempts by users.4

In an attempt to fix the aforementioned problem, the Wikimedia Foundation and

the German Wikimedia chapter (Wikimedia Deutschland) have collaborated to develop

Flagged Revisions,5 (or FlaggedRevs for short), a highly configurable extension to the

MediaWiki software that runs Wikipedia. FlaggedRevs acts as a pre-publication content

moderation because FlaggedRevs software will display the most recent “flagged” revi-

sion of any page for which FlaggedRevs is enabled instead of the most recent revision

in general. FlaggedRevs is designed to “give additional information about quality”, by

ensuring the readers of Wikipedia that all flagged revisions are vetted for vandalism or

substandard content (i.e. contains obvious mistakes because of sloppy editing) and to

provide information to readers about whether or not readers are reading a version of the

article that has been reviewed by an established contributor.6

4https://www.latimes.com/archives/la-xpm-2005-jun-21-na-wiki21-story.html
5https://meta.wikimedia.org/wiki/Flagged_Revisions
6https://meta.wikimedia.org/wiki/Flagged_Revisions
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Although there are many details that can vary based on the way that the system is

configured, it has typically been deployed in the following way on Wikipedia language

editions: users are divided into groups of trusted and untrusted users. Untrusted users

typically include all users without accounts as well as users who have created accounts

recently and/or contributed very little. While unregistered editors remain untrusted,

editors with accounts are automatically promoted to trusted status when they clear

certain thresholds dictated by the wiki’s configuration. For example, German Wikipedia

allows registered editors who havemade at least 300 edits with at least 30 edit comments.7

Revisions to articlesmade by trusted users are automaticallymadepublic (i.e., “flagged”)—

just as it would if FlaggedRevs were not deployed. Revisions to articles made by untrusted

users are not made visible immediately but are instead marked as provisional and placed

into a queue for review by others. These contributions must be reviewed by some other

group (frequently, but not necessarily, the group of trusted users described above) who

can flag (i.e., publish) the proposed revision, reject by the proposed revisions by revert-

ing it, or edit the proposed revision. The FlaggedRevs extension must be installed on a

per-wiki basis meaning that it exists in some Wikipedia language editions, but not in

most. Implementations of FlaggedRevs were placed under a moratorium in April 2017

due to the high staffing cost associated with configuring and maintaining the system.8

7https://noc.wikimedia.org/conf/highlight.php?file=flaggedrevs.php
8ibid.

Manuscript submitted to ACM





















729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

The risks, benefits, and consequences of pre-publication moderation: Evidence from 17 Wikipedia language editions15

Prior to this moratorium, twenty-four language editions of Wikipedia enabled Flagge-

dRevs.9 Additionally, some language editions of Wikipedia-related projects (Wiktionary,

Wikibooks, Wikinews, Wikiquote, Wikisource) have also implemented FlaggedRevs.

Despite it’s importance and widespread deployment, very little is known about the

effectiveness of the system and its impact on the affected communities. A report made

by members of the Wikimedia Foundation in 2008 gave a brief overview of the extension,

its capabilities and deployment status at the time, but acknowledged that “it is not yet

fully understood what the impact of the implementation of FlaggedRevs has been on the

number of contributions by new users”.10 Our work seeks to address this empirical gap.

4 METHODS

4.1 Data

We first collected an exhaustive dataset of revision activities, as well as the content

moderation activities that occurred on all Wikipedia language editions that enabled

FlaggedRevs. This included 24 wikis in total. The datasets that we collected are publicly

available in theWikimedia Downloads website.11 For each wiki, we downloaded the stub-

meta-history XML dumps which contains the metadata for all revisions made to pages

that are public (i.e., non-deleted) at the time that the database dump was created. We also
9Although it did not use the system, English Wikipedia implemented a similar vetting system called Pending Changes, but on a much smaller scale.
10https://meta.wikimedia.org/wiki/FlaggedRevs_Report_December_2008
11https://dumps.wikimedia.org/
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used the flaggedrevs SQL dump which contains information about all the revisions that

have been reviewed under the FlaggedRevs system in each wiki. The datasets include

substantial variation across the wikis included including linguistic diversity, activity

level, and organizational structure. Wikis vary in size, with numbers of contributions

ranging from thousands to millions each year. Furthermore, the way each wiki configure

FlaggedRevs also varies enormously. Differences include the criteria for a revision to

be flagged, published guidelines for determining the quality and intent of the revision,

or differences in when the system will treat a contributors as “trusted.” We used a

series of custom software scripts to convert the data in both the database dumps into a

tabular format which allowed us to build measures associated with the concepts in our

hypotheses. We have placed the full code and datasets used for these analyses into an

archival repository in the Harvard Dataverse (URL not included for blind review).

Because of the waywe constructed our hypotheses, we built two datasets with different

metadata and units of analysis. The first dataset is referred to as the wiki-level dataset.

We use this datasets to test H1, H2, and H3. It contains the aggregated information of all

Wikipedia language editions that enabled FlaggedRevs, which is described further below.

The second dataset is referred to as the user-level dataset, which is used to test H4. Each

row of this second dataset represents information of an individual user within one of the

wikis in our analysis.
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In the wiki-level dataset, our unit of analysis is the wiki month. In each case, we

constructed these data by aggregating across the raw dataset collected initially where

each row involves a revision to a page inWikipedia.We then proceeded to first restrict our

analysis to only article pages by excluding revisions to pages in non-article “namespaces”

(i.e., discussion pages, special pages, etc.). 12 We did so because Wikipedia has a different

set of guidelines when reviewing these contributions for vandalism and FlaggedRevs may

not enabled for these pages. Next, we aggregate data and looking at the total number

of contributions by month for each wiki and further grouping them by type of user in

ways that correspond to our sub-hypotheses (as described in ourmeasures section below).

Since our first three hypotheses concern the effect of the content moderation mechanism

on active communities of affected and unaffected users, we excluded any wiki with fewer

than 30 new contributions per month on average that are made by each of these editor

groups.

For each published contribution, we must know the timestamp of the contribution, the

timestamp of the it being published (i.e., flagged), and whether or not it is is published

manually (as opposed to automatically and immediately). Because they are critical for our

analyses, we omitted any wiki for which we could not obtain these data. As a result, our

empirical setting is a population of 17 Wikipedia communities operating under different

12https://en.wikipedia.org/wiki/Wikipedia:Namespace
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languages: Albanian, Arabic, Belarusian, Bengali, Bosnian, Esperanto, Persian, Finnish,

Georgian, German, Hungarian, Indonesian, Interlingua, Macedonian, Polish, Russian and

Turkish.

Because each wiki enabled FlaggedRevs at a different point in time, and we are only

interested in observing possible immediate impact of the intervention, our datasets are

restricted to revisionsmade to the 12months periods before and after the day FlaggedRevs

is enabled. Finally, because each wiki varies vastly is size, and we are only interested

in the average effects of FlaggedRevs across all wikis, we standardized each measure

of outcome in H1, H2, and H3 in standard deviation unit within individual wikis. For

example, instead of averaging the number of contributions per month made by an editor

group across 17wikis, we calculated the number of contributions of eachwiki, in standard

deviation unit, before calculating the average number across all wikis. This ensures that

the measure of outcome from each wiki has a equally weighted impact on our analysis,

regardless of their size.

The user-level dataset does not have additional exclusion criteria but only contains

information about new editors from the 17 wikis listed above. We consider each unique

editor ID (either a pseudonym if it is a registered account, or an IP address) to be a

unique user, and looking to the record of contributions of said user. Because each row

in the dataset contains information of an editor, the total number of data points across
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17 wikis would be so much bigger than the previous dataset. As a result, the dataset

is only restricted to users whose contribution is made within 90 days before and after

FlaggedRevs is enabled. There are 1,972,861 observations in this second dataset.

4.2 Outcome measures

Our H1 hypotheses pertain to the number of low quality contributions that are made

visible to the public we operationalize this as the number of visible rejected contributions

which reflects the aggregated and standardized number of visible reverted contributions

per month, for each wiki. OnWikipedia, when a contribution to an article is rejected, the

moderator usually performs a “revert” action to nullify any changes said contribution

has made. With FlaggedRevs, edits are never “disapproved” explicitly. Instead, rejected

edits are simply reverted to a previously accepted version. Before FlaggedRevs is enabled

on a wiki, all contributions are instantly accessible by the public, even if they are later

reverted. After FlaggedRevs is enabled, contributions made by the affected editor groups

would have to wait and be approved (flagged) to be visible.

Our H2 hypotheses suggest that pre-publication review will affect the quality of con-

tributions overall, not only the ones that are made visible. We operationalize H2 in two

ways. First, we use the number of rejected contributions which we operationize as the

number of identity reverts. Because reverting is the most frequently used tool to fight
Manuscript submitted to ACM
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vandalism[24], the number of rejected contributions is a fairly reliable indication of

quality. A large body of previous research into Wikipedia has used identity reverts as a

measure of quality [24, 49? ]. This measure of outcome is also aggregated and standard-

ized. We also test this hypothesis using average quality which we operationalize as revert

rate. Following previous research [47, 49], revert rate is measured as the proportion of

contributions that are eventually reverted. Together with the number of rejected con-

tributions, they give a more complete information about the quality of work from each

editor group.

Our H3 hypotheses call for a measure of user productivity. Once again, there a range

of ways to measure productivity. We follow Hill and Shaw [22] and a range of other

scholars who operationalize wiki-level productivity as the number of contributions (i.e.,

unique revisions or edits made) to article pages (i.e., pages in the article namespace).

This means that we exclude things like conversation, governance, and interpersonal

communication that are also contributions but which are made to non-article pages. This

measure is also aggregated by month and standardized by wiki.

Finally, we test our H4 hypotheses by looking for changes in return rate which is

measured at the level of each user. First, we follow previous work by Geiger et al. to

break edits into sessions which define as “a sequence of edits made by an editor where

the difference between the time at which any two sequential edits are saved is less than
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one hour” [14]. A user is said to have returned if they make their first edit session to a

article page and then make another edit session within 60 days of their first edit session.

Our hypotheses are framed in terms of groups of users who are affected (HNa), not

affected (HNb), and overall community effects (HNc). In practice, this means that we

stratify each of the variables described above into several groups of user. We operational-

ize these groups as follows:

(1) IP editors: Editors who edit on Wikipedia without a registered pseudonym and

whose contribution is credited to their IP address. This group’s contributions are

subject to FlaggedRevs so this measure is used to test part of our hypotheses HNa.

(2) First-time registered editors: Users who registered for an account and made their

first edit. This group’s contributions are also affected to FlaggedRevs so this measure

is used in a second set of tests of hypotheses HNa.

(3) Returning registered editors: Users who had contributed at least one edit session

under a stable identifier. Because each Wikipedia language edition makes choices

to determine whether a returning registered editors is “trusted”, and because these

configurations have been changed over time, it is therefore extremely difficult to

determine exactly whether a returning registered editor’s work was automatically

flagged. That said, it is safe to assume that a large number of contributions made by

returning registered editors are not affected by FlaggedRevs because a largemajority
Manuscript submitted to ACM
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of contributions to wikis belong to a very small group of veteran contributors [38].

Because the measure is imperfect, it acts as a conservative test of our hypotheses

HNb.

(4) All editors: All users contributing to a wiki. This group is used to test our hypothe-

ses HNc.

4.3 Analytic Plan

For our first three hypotheses, we seek to understand the impact of FlaggedRevs at the

time it was implemented. To do so, we use Interrupted time-series analysis (ITS). ITS

is a quasi-experimental research design and is particularly useful when investigators

have neither control over the implementation of an intervention nor the power to create

treatment group and control group [25]. ITS analysis involves constructing a time series

of population-level outcome of interest (i.e., each of the measures described above) and

then testing for statistically different changes in the outcome in the time periods before

and time periods after implementation of the intervention [40]. ITS has been used in a

series of social computing studies [9, 39, 46].

ITS relies on a series of assumptions and analytical choices [7]. First, it requires a clearly

defined intervention with a known implementation date. In our dataset, each wiki has

a clear date where FlaggedRevs is enabled. The second step is identifying an outcome
Manuscript submitted to ACM
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that is likely to be affected by the intervention. For each of our hypotheses, we clearly

describe the affected measures as described above. It is an important reminder that, in

our dataset, different wikis have vastly different sizes, meaning comparing the effect of

FlaggedRevs across different wikis requires some data scaling. As a result, instead of

using the raw number of contributions per time interval, we standardized the outcome of

interest in standard deviation units. Third, ITS requires at least 8 observations of outcome

at 8 different points in time for each period before and after the intervention. Usually,

more observations are useful, but having too many data points might have diminishing

effects, as there are cases when the measure of outcome changes significantly in the

immediate period after the intervention, but ends up balanced out in the long run, which

could affect the model. We chose to observe our independent variable on a monthly basis,

over the period of two years, from 12 months before to 12 months after FlaggedRevs is

enabled.

In practice, ITS divides the dataset into two time segments—the first segment comprises

rates of the event before the intervention or policy, and the second segment is the rates

after the intervention. ITS applies what is effectively a segmented regression to allow the

researcher to test differences the change in level (i.e., a change in the intercept) as well

as change in slope associated with the intervention or change in policy while controlling

for the overall trend in the outcome rate of interest. Segmented regression essentially
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means that a linear regression model is applied twice and there are separate intercept

and slope coefficients for the pre-intervention and post-intervention time segments. In

this way, ITS allows researchers to estimate a statistical difference between the two time

periods as a basis to verify the causal claim that the intervention has a meaningful impact

on the outcome of interest.

ITS typically is conducted using a single time series. In our case, we have panel data

from 17 different wikis—each with their own trajectories. As a result, we fit wiki-level

baseline trends and then seek to estimate the average changes (in both intercept and

slope) at the point in time that FlaggedRevs is enabled. The panel data linear regression

model that ITS uses has the following form:

𝑌 = 𝛽0 + 𝛽wikiwiki × time + 𝛽1flaggedrev_on + 𝛽2flaggedrev_on × time + 𝜀

The descriptions of our variables in our model are as follows:

(1) Y : Our dependent variable capturing volume of activity from some subset of users,

as described in the previous section.

(2) time: The month in the study period relative to when FlaggedRevs is turned on.

For example, if we measure the outcome of interest one month prior to the day

FlaggedRevs is implemented, the time variable would have a value equal to -1.
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(3) flaggedrev_on: A dichotomous variable indicating the pre-intervention period (coded

0) or the post-intervention period (coded 1).

(4) wiki: A categorical variable included as a vector of dummy variables indicating the

wiki (bold notation indicates that this variable is vector).

We do not report or interpret the coefficients associated with 𝛽wiki which are included

only as control variables and which capture baseline trends for each wiki (e.g., some

might be increasing or decreasing in some measure). Because we have standardized each

wikis in terms of activity, we do not need to include wiki-level intercept terms since

these will all take the same value as a result of our measure construction. Our estimate

for 𝛽1 associated with flaggedrev_on estimates the average instantaneous change in level

immediately following the intervention that enabled the system. Finally, the coefficient

𝛽2 associated with (flaggedrev_on× time) indicates average change in slope following the

intervention.

To test H4, we seek to understand how FlaggedRevs was associated with the return

rate of new users. Because the measure of return rate happens at the level of individual

users, we can do better than an overall aggregate and instead model the effect at the

return of users. For this, we use a user-level dataset were the unit of analysis is a new

user on each wiki. While it is possible that editors can contribute under different IP

addresses, or creating different accounts, we assume that the first edit made by under
Manuscript submitted to ACM
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an unique editor id counts as a new user (they can be unregistered or registered). Our

analytical model is a general linear mixed model (GLMM), based on the work by Mulloch

et. al. [33]. In particular, we use a logistic binomial regression model with two wiki-level

random effects at the wiki level: a random intercept term (1|wiki) and a random slope

term (time|wiki). These address issues of repeated measures of users within wikis. The

mixed-effects model we use is as follows:

log( returned
1 − returned

) =𝛽0 + 𝛽1flaggedrevs_on + 𝛽2first_edit_published + 𝛽3unregistered + 𝛽4time+

𝛽5first_edit_published × unregistered + 𝛽6flaggedrevs_on × first_edit_published+

𝛽7flaggedrevs_on × first_edit_published × unregistered + (1|wiki) + (𝑡𝑖𝑚𝑒 |wiki)

The descriptions of our variables in our model are as follows:

(1) returned: a dichotomous variable indicating whether or not an editor made another

edit session within 60 days of the first edit session.

(2) flaggedrevs_on: A dichotomous variable indicating whether or not an editor’s first

edit session was made after the day FlaggedRevs is implemented

(3) first_edit_published: A dichotomous variable indicating whether or not the final

edit in a user’s first edit session is published. If the entire session is reverted—as

is common—this will revert all of the edits in the session including the final edit.
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Because revisions can still be reverted after they are published, wemeasured that the

editor’s first edit session is visible if it is either not reverted at all, or it is reviewed

(flagged) before being reverted.

(4) unregistered: a dichotomous variable indicating whether or not this is an IP editor.

(5) time: the month in the study period relative to when FlaggedRevs is turned on.

For example, if we measure the outcome of interest one month prior to the day

FlaggedRevs is implemented, the time variable would have a value equal to -1.

(6) wiki: a categorical variable of wiki-level as random effects, to fit individual trend

lines for each wiki.

Our test for H4 is is focused on the parameters associated with the interaction terms be-

tween our three independent variables (flaggedrevs_on, first_edit_published, unregistered).

These interactions allows us to understand how the effect of FlaggedRevs on newcomer

return rate varies based on whether the user had registered for an account when making

the first edit, and whether their contribution was visible to the public at some point. For

example, we suspected that accepting or reverting someone’s work as a form of feedback

would likely have an impact on the contributor’s decision to make further commitment

to the site, especially among unregistered newcomers, an observation that was in line

with the work of Halfaker et. al. [21]. As usual, our main focal point here is the effect of

FlaggedRevs, and whether or not it has a statistical significance on newcomer retention
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Fig. 1. Impact of FlaggedRevs on the quantity of visible reverted contributions (in std unit) made by different
groups of users on Wikipedia. The vertical line indicates the start of the intervention. The regression lines along with
confidence bands are fitted by a simple linear model. The error bars represent 95% confidence intervals.

rate. The time variable is another independent variable, which helps us understand the

trend of the outcome through time.

5 RESULTS

To evaluate each of our hypotheses, we first look at a series of visualizations which

allow us to visually inspect our data for the hypothesized relationships. Figure 1 shows

the data we use to test the first set of hypotheses (H1) and depicts the edit trend of
Manuscript submitted to ACM
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our four user groups in two separate periods: pre-intervention and post-intervention.

The vertical line indicates the start of the intervention. Each data point represents the

mean of the number of contributions by an editor group, in standard deviation units.

The regression lines along with confidence bands are fitted by a simple linear model

(we use geom_smooth() function in R to draw these lines). The error bars represent 95%

confidence intervals. We chose to clearly differentiate the two periods by excluding the

data point at the month of the intervention. The table of coefficients and their result of

statistical statistical significance for our ITS model will be presented in the Appendix, as

we are going over the main findings.

From both the Figure 1 and our statistical test that is reported in Table ??, we see a

very clear effect of FlaggedRevs in reducing the number of visible reverted contributions

among affected users (H1a) as well as the overall community (H1c). It is clear that after

the intervention, most of contributions made by the affected users that will eventually be

rejected are rejected before they are published. Our statistical tests from our ITS analysis

shown in Table ?? in the Appendix confirm that these effects are statistically significant.

As we hypothesized, this relationship was not statistically significant among returning

registered users, who appear to be largely unaffected by the moderation system. The

results we see are in line with our expectation for the first hypothesis and confirm that
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FlaggedRevs is effective at preventing substandard contributions by affected users from

being visible to the public.

Our tests for H2 are visualized in Figures 2 and 3 which allow us to visually assess

the impact of FlaggedRevs on the volume of low quality contributions and average

quality among the four user groups. At the month that FlaggedRevs is installed, we

see the number of rejected edits made by IP editors spiked significantly. Upon further

investigation, we find that when FlaggedRevs was deployed, it retroactively put past

edits made by the untrusted users under review, regardless of the date that the edit

occurred. In this way, the system often required reviewers to assess a large volume

of past contributions and choose whether to reject them. After the initial rollout, the

number of reverted contributions among untrusted IP editors quickly drops even below

the mean level, before gradually going back up. Statistical test result seen in Table ?? (see

Appendix) of coefficients and confirm a significant impact of FlaggedRevs on the number

of reverted contributions made by IP editors. We do not find the same effect on first-time

registered editors (our second group of affected editors). While the number of rejected

contributions shown in Figure 2 appears to increase gradually, this trend is consistent

with the pre-intervention trend, suggesting that FlaggedRevs is unlikely to play a role in

the uptrend. We also do not see any major effect of FlaggedRevs on the unaffected group

of editors, as well as the overall community.
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The impact of FlaggedRevs on the reverted rate of contributions shown in Figure 3made

by different group of users tells a slightly different story. We see neither a significant

immediate change nor a change in trajectory caused by the intervention. While we do

see a slight up uptick in the reverted rate during the month that FlaggedRevs is deployed,

the rate quickly goes back down to the mean level before gradually increasing over

time. Although nuanced in some ways, our overall results for H2 are clear and reflect a

consistent null result in regards to our hypotheses: we find find little evidence of a major

impact of the pre-moderation system on the quality of contributions.

Regarding our hypotheses H3, we again see two different stories for the two editor

groups that are affected by FlaggedRevs. The deployment of the systems appears to be

associated with an immediate decline in the number of contributions made by IP editors.

Once again, we do not see a similar effect within the first-time registered editor group

also affected by FlaggedRevs. While the system did not cause an immediate change in

number of contributions among the returning registered editor group and the all editor

group, it does appear associated with significant change in the trajectory compared

to the pre-intervention period. That said, it does not correspond to negative growth

(the post-intervention edit trend remains fairly flat and hovers near the mean level).

The ITS regression results shown in Table 5 confirm that the visually apparent effects
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Fig. 2. Impact of FlaggedRevs on the number of reverted contributions (in std unit) made by different groups of
users on Wikipedia.

described above are all statistically significant. Overall, we see the deployment of the pre-

publication discouraged participation of the group of editors with lowest commitment

and most targeted by the additional safeguard, but not other groups.

Finally, our test of H4 is reported in Table 1 which reports the estimates from our

GLMM estimating newcomer return rate on wikis that implement FlaggedRevs. We find

that that although FlaggedRevs did negatively affected the return rate of newcomers

in a way that was statistically significant, its effect appears extremely limited. Because
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Fig. 3. Impact of FlaggedRevs on the reverted rate (in std unit) of contributions made by different groups of users on
Wikipedia.

three way interactions can be difficult to interpret, we report a range of predicted values

from our models and visualize these results in Figure 5. Our models suggests that before

FlaggedRevs was enabled, 67% of newcomers return to make another edit session within

60 days of their first given that their first edit session was not published and that they

registered for an account. Our model suggests that the return rate is only reduced by 2%

on average when FlaggedRevs is enabled.
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Fig. 4. Impact of FlaggedRevs on the number of contributions among different groups of users on Wikipedia.

This relatively small effect is a stark contrast to the effects of other variables in the

same model. A newcomer’s first edit session being published is associated with a large

increase in the chance that the editor makes another edit session from 67% to 88%.We also

find that first-time registered users are much more likely to return than first-time editors

editing without accounts: first-time IP editors return at 15% rate when their first effort is

not published and approximately 23% when it is published, regardless of whether or not
Manuscript submitted to ACM
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Table 1. Estimated values of the multilevel logistic model estimating maximum likelihood of newcomer return rate.

Estimated Value Std. Error p-value
(Intercept) 0.771 0.159 <0.001 (***)
flaggedrevs_on -0.044 0.020 0.031 (*)
first_edit_published 1.273 0.014 <0.001 (***)
ip -2.47 0.016 <0.001 (***)
time -0.015 0.006 0.024 (*)
first_edit_published& ip -0.915 0.017 <0.001 (***)
flaggedrevs& first_edit_published 0.043 0.022 0.053 (.)
flaggedrevs& first_edit_published& ip -0.056 0.024 0.020 (*)
Significant codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
Number of observations: 1,972,861

Fig. 5. Three-way interaction of different independent variables on newcomer return rate on wikis that implemented
FlaggedRevs.

FlaggedRevs has been implemented. The return rate does not seem to vary significantly

through time.
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6 DISCUSSION AND LIMITATIONS

Our findings suggest that the deployment of pre-publication moderation did not result

in major negative consequences on the quality, productivity, and sustainability of com-

munities. These results will likely be seen as vindication for communities that have

implemented FlaggedRevs and systems like it over objections that the collateral damage

from the system would overwhelm its benefits. Our results provide little evidence to

support these claims.

On the other hand, there a range of other reasons that Wikipedia language editions opt

not to use pre-publication review that might still obtain. From a technical perspective,

FlaggedRevs’ source code lacks maintenance and development. Additionally, the system

requires a set of configuration choices that must be customized to each community.

All of these make it difficult for new wikis to easily adopt FlaggedRes and leads to

frustrations among both members of communities that have deployed it. FlaggedRevs

itself suffers from a range of specific limitations. For example, FlaggedRevs do not provide

any notification for editors to let them know if their contribution has been rejected or

approved.13 Some users with review rights complained that “[u]ser interface is not made

for checking all the edits in realtime”.14 Since April 2017, requests for deployment of the

system by other wikis have been paused by the Wikimedia Foundation indefinitely for

13https://meta.wikimedia.org/wiki/Talk:Flagged_Revisions
14https://meta.wikimedia.org/wiki/Requests_for_comment/Flagged_revisions_deployment
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these reasons.15 In many senses, these challenges with the FlaggedRevs’ system make its

relative minimal effects on communities even more surprising.

An additional limitation that stems from the heterogeneity in communities deploying

the system is that the experience of FlaggedRevs may vary enormously across commu-

nities. For example, wikis of vastly different sizes also have vastly different numbers of

editors with review rights, leading to vastly different average review times. For exam-

ple, German Wikipedia currently has 19,994 users with review rights, and the average

waiting time of the pages with pending changes is 13 to 18 hours.16 Meanwhile, Russian

Wikipedia has 2,422 users with review rights, and the average waiting time of the pages

with pending changes is 761 days 8 hours.17

At a minimum, we believe that our work suggests that, a streamlined version of

FlaggedRevs could serve as a path for reviewing contributions from populations of editors

that are currently deemed too “high risk” to contribute to peer production systems at

all and have already been blocked across the board. For example, research by Chau et

al. has shown that contributions from anonymity-seeking Tor users that are currently

blocked from contributing to Wikipedia have been the source of substantial value in the

past [49]. We believe that our study suggests that a pre-publication moderation system

15https://phabricator.wikimedia.org/T66726#3189794
16https://perma.cc/PL7G-M2ZE
17https://perma.cc/B3EV-82BC
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like FlaggedRevs may be an effective way to effectively filter low quality contributions

while retaining good-faith attempts.

7 CONCLUSION

This study seeks to measure the risks, benefits and unintended effects associated with

the deployment of a pre-publication moderation system. The paper does so by present-

ing a case study of FlaggedRevs, a system which is designed by German Wikipedia and

deployed by 24 Wikipedia language editions. First, we sought to understand if the de-

ployment of FlaggedRevs caused a fundamental difference in the way contributions are

reviewed and found that FlaggedRevs effectivedly prevented vandalism and other low

quality contributions from ever being published. We did not find strong evidence of any

meaningful long-term change in contribution quality.

We also found that, while the system caused a significant drop in the number of

contributions made by IP editors, it did not impact users with accounts editing for the

first time or users editing with accounts. We did not estimate an overall community-level

effect on contribution rates. Although we hypothesized that pre-publication moderation

system would impact newcomers’ return rate, we once again find that FlaggedRevs does

not appear to have made a substantial impact (although the effect was negative and

statistically significant). Users appeared to be largely unfazed by the delayed feedback.
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Our results suggest that pre-publication review can both protect peer produced resources

against bad contributions going public and without necessarily deterring participation.

APPENDIX

Table 2. Coefficients of the OLS model estimating the number of visible reverted contributions (in standard deviation
unit) for each group of editors, associated with H1.

Coefficient Std. Error p-value
IP Editors
flaggedrev_on -1.78 0.086 <0.001(***)
flaggedrev_on × time 0.014 0.011 0.238
First-time Editors
flaggedrev_on -1.759 0.095 <0.001(***)
flaggedrev_on × time 0.018 0.013 0.156
Returning Registered Editors
flaggedrev_on -0.348 0.188 0.065
flaggedrev_on × time -0.056 0.026 0.129
All Editors
flaggedrev_on -1.27 0.167 <0.001(***)
flaggedrev_on × time -0.035 0.023 0.124

Table 3. Coefficients of the OLS model estimating the number of reverted contributions (in standard deviation unit)
for each group of editors, associated with H2.

Coefficient Std. Error p-value
IP Editors
flaggedrev_on -0.54 0.203 0.008(**)
flaggedrev_on × time 0.018 0.028 0.517
First-time Editors
flaggedrev_on 0.019 0.213 0.640
flaggedrev_on × time 0.015 0.027 0.57
Returning Registered Editors
flaggedrev_on -0.20 0.202 0.322
flaggedrev_on × time -0.047 0.028 0.088 (*)
All Editors
flaggedrev_on -0.399 0.202 0.056
flaggedrev_on × time -0.026 0.028 0.336
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Table 4. Coefficients of the OLS model estimating the reverted rate (in standard deviation unit) for each group of
editors, associated with H2.

Coefficient Std. Error p-value
IP Editors
flaggedrev_on -0.080 0.20 0.830
flaggedrev_on × time 0.009 0.027 0.723
First-time Editors
flaggedrev_on 0.101 0.199 0.612
flaggedrev_on × time 0.028 0.027 0.299
Returning Registered Editors
flaggedrev_on -0.217 0.203 0.286
flaggedrev_on × time -0.006 0.028 0.815
All Editors
flaggedrev_on -0.326 0.200 0.104
flaggedrev_on × time 0.012 0.027 0.664

Table 5. Coefficients of the OLS model estimating the number of edits (in standard deviation unit) made by each
group of editors, associated with H3.

Coefficient Std. Error p-value
IP Editors
flaggedrev_on -0.626 0.209 0.003(**)
flaggedrev_on × time 0.0287 0.028 0.3120
First-time Editors
flaggedrev_on 0.0002 0.030 0.994
flaggedrev_on × time 0.0348 0.222 0.876
Returning Registered Editors
flaggedrev_on -0.285 0.192 0.1392
flaggedrev_on × time -0.063 0.026 0.067 (*)
All Editors
flaggedrev_on -0.320 0.209 0.20
flaggedrev_on × time -0.064 0.028 0.062 (*)
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