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How Interest-Driven Content Creation Can Limit Opportunities for Informal
Learning: A Case Study on Novices’ Usage of Data Structures in Scratch
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Interest-driven content creation in online communities is cited as a promising pathway for learning, but often falls short in practice.
Through a mixed-method analysis of data from Scratch, we examine how novices learn to program with simple data structures
by using community-produced learning resources. First, we present a qualitative study that describes how community-produced
learning resources can increasingly spotlight certain archetypal interests and thus discourage exploration and diverse interests in the
community. In a second quantitative study, we find broad support for this dynamic in several hypothesis tests. Our findings identify
an interest-driven social feedback loop that can restrict learning opportunities over time by limiting sources of inspiration, posing
barriers to broadening participation, and confining learners’ understanding of general concepts. We conclude by suggesting several
approaches that may mitigate these dynamics.
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1 INTRODUCTION

Scholars increasing look to interest-driven online communities as promising environ-

ments for supporting learning [7, 38, 42]. These communities rely on user engagement

in content creation to support informal learning wherein users make and share artifacts

by engaging in discussion, resource sharing, and Q&A that serve as learning resources
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for others. Although communities exist in a range of domains like creative writing [9],

graphical design [55], and more, some of the largest and most studied have focused on

supporting young people in learning to program. Widely known examples include the

Scratch community [58] and MOOSE Crossing [61]. These communities are built around

the idea that learners can develop programming skills through creating and sharing cod-

ing projects and interacting with other learners and their creations [6, 7, 44, 45].

Despite this promise, many participants in interest-driven online communities struggle

to become fluent in the topic that they are learning about. Given the opt-in and self-

directed nature of participation in online communities, it is often difficult to motivate

long-term engagement or to engage diverse groups of learners [14, 55, 67]. For example,

in the Scratch community, steep drop-offs in engagement over time mean that most users

never demonstrate a broad range of computational thinking skills or use more than a

small portion of the Scratch programming language [18, 29, 56, 78]. That said, recent

research suggests that increasing engagement alone is hardly a panacea to this problem.

A range of studies have documented that even active informal learning communities

face difficulties in providing the requisite support for learning such as learner-generated

tutorials, examples, and feedback that are both high-quality and useful to a broad range of

learners [1, 15, 77]. Furthermore, although discussion and Q&A in online interest-driven

communities can result in exchanges of ideas, feedback, and resources, many play out
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at the level of superficial socialization in ways that do not dive into—and can even act

as a barrier to—learning-oriented discussions [68]. To this date, we still understand little

about why interest driven content creation is sometimes such a rich setup for informal

learning while it often fall short, let alone how we can best design to facilitate it.

In this paper, we present two studies using data from the Scratch community. Specif-

ically, we describe a mechanism of how unstructured interest-driven content creation

can result in limited opportunities for informal learning, and identify potential ways to

improve it. In Study 1, we present a theory-building grounded theory analysis of 400

discussion threads in the Scratch forums about variables and lists—the data structures

available in Scratch. Based on this analysis, we hypothesize a social feedback loop where

engagement in content sharing and Q&A naturally raises the visibility of some particular

ways of using variables and lists in Scratch projects. Through their increased visibility

to learners, these examples become archetypes and go on to define or even potentially

limit the breadth of future projects in the community. In Study 2, we then conduct a

quantitative analysis of the code corpus of more than 200,000 Scratch projects publicly

shared between September 2008 and April 2012 to test our hypothesis and find statis-

tical support for the social process theorized in our first study. Our findings articulate

an important trade-off in online informal learning environments in that interest-driven

participation can generate learning resources framed in a specific set of interests while
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limiting creativity and posing a barrier to broadening participation. We conclude with

several implications for design and content curation that we believe could improve sup-

port for diverse interests.

This work makes several contributions to the CHI community and the HCI and social

computing literature on learning in online informal settings. First, we offer a theoretical

contribution in the form of a framework describing a dynamic process wherein interest-

driven content creation can both assist learning about particular topics while posing

important limits on the ways that those topics are engaged with. Second, we make an

empirical contribution by describing the mechanism of informal learning through com-

putational participation in online communities by presenting detailed qualitative and

quantitative evidence from the Scratch online community. Finally, we make a contribu-

tion to the literature on the design of informal learning systems by suggesting how on-

line interest-driven communities can be designed to mitigate the negative repercussions

of the dynamic we describe.
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2 BACKGROUND

Online communities are increasingly common settings for participatory, interest-driven,

and community-supported learning [7, 30, 41, 42]. A broad range of theoretical frame-

works have been used to design and analyze these communities—many building founda-

tional theories on the social origins of learning by Vygotsky [74] and Lave and Wenger

[51]. Another key pedagogical framing is Papert [59]’s view of learning as the construc-

tion of knowledge that “happens especially felicitously in a context where the learner

is consciously engaged in constructing a public entity” (p. 1). Papert [60]’s framework

also emphasizes the importance of interest-driven exploration and “personally powerful

ideas” in promoting learning. Themore recent frameworks on connected learning [39, 40]

have also endorsed the role of shared interest and participatory culture in building learn-

ing communities.

Learning experiences in interest-driven online communities happen through two pri-

mary pathways: through sharing creative artifacts like fan fiction [9], design mock-ups

[25], interactive computer programs [17], and through social interactions around these

artifacts like commenting, remixing, and critiquing. To promote the first pathway, many

communities allow the products of learning to be made visible as public artifacts that

can be used by others as illustrative examples and for inspiration [18, 29, 55] as well as
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scaffolds for replication, practice, and innovation [18, 70]. To promote the second, com-

munities feature direct user-to-user support such as comments [9], forum posts [48], and

Q&A discussions [71] that can help members gain an understanding of specific topics

or techniques [68]. The two pathways are deeply interwoven. By making artifacts pub-

licly visible, creators are able to receive constructive feedback that can build and support

learning [29, 79]. This can often include input from experts and professionals that are

otherwise unavailable [36, 49] as well as social recognition and support [9]. Learners in

online communities center their social interactions around discussions of public artifacts

and as social interactions support the further production of artifacts [46], collaborative

problem-solving [52, 68, 71] and community-wise knowledge advancement [31].

In recent years, communities that strive to support novices to learn programming skills

in creative ways have emerged as a prominent example of online interest-driven learn-

ing communities. In what Kafai [44] has described as “the social turn in K–12 computing”

(p. 27) and “computational participation,” a number of scholars have turned to interest-

driven and socially supported contexts to promote learning about computingwhere learn-

ers create programs to be shared with peers. Through projects inspired by this approach,

millions of young people have engaged in programming in online communities over

6
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the last decade. Some vivid examples of these communities include programmable mul-

tiplayer game environments [7], platforms for interactive media creation and sharing

[58, 62, 76], and amateur technical support groups for a fanfiction website [24].

Despite the promise of these communities seen by many researchers and practitioners,

it remains unclear how to best promote computational participation to support learning.

Recent studies of online programming communities have shown unequal outcomes in

terms of both participation and learning based on gender [23, 29] and that important de-

bugging or collaborative sense-making activities are not always helped by socialization

[68]. Furthermore, while online communities allow users to gain inspiration from exam-

ples posted by others, studies on remixing activities suggest it might negatively impact

originality [33]. These examples indicate a lack of a general understanding of the dynam-

ics around learning about computation in online informal contexts. In interest-driven

communities of all types, learning pathways can be blocked by the difficulty of motivat-

ing and ensuring the quality of content generation [1, 36, 47, 55, 77] and the challenge of

engaging a larger and more diverse group of users in creating learning resources [8, 14].

This mismatch between the theoretical promise of online interest-driven communities

and what is seen in practice indicates a lack of understanding of when user engagement

supports or fails to support learning and how we can best design to facilitate it.
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Because computational participation involves learning many different concepts, we fo-

cus on learning experiences over one specific computational concept that has been the

subject of substantial academic work: simple data structures (i.e., variables and lists). We

consider data structures specifically because Brennan and Resnick [5] identify the ability

to understand how to store, retrieve, and update data as one of seven major practices that

contribute to computational thinking [3, 21, 75]. Despite their importance, learners find it

challenging to learn variables and lists in interest-driven coding communities. Research

has shown that data is the least commonly engaged computational thinking concept in

Scratch [18], and even when used, it is often engaged with in superficial ways [4].

Why are data structures hard to learn? An explanation stems from the fact that learn-

ing a computational concept involves learning its structural and functional uses [22].

The structural uses of variables and lists (i.e., how to integrate them in a program) are

straightforward—for example in Scratch, there are only two methods (get() and set())

that represent the structural usage of scalar variables. The functional uses of variables

and lists (i.e., what meaningful outcome that they can help create), however, are both

broad and invisible. Variables can be for wide range of applications such as storing user

input, keeping track of internal program state, counting in a loop, and so on. Learners

requires “specific tutoring” [22, p. 207], or effective scaffolds to cope with misconceptions

about how a variable could be used to make concrete functionality [32]. It is unclear to
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(a) Sample Scratch code showing a vari-
able in the form of a data block called
“score” being decremented on collision
with a bat sprite (b) Index page of the Scratch forums

Fig. 1. The Scratch programming language and online community

what extent participation in online interest-driven communities provides this tutoring.

Therefore, we ask the research question: When does interest-driven content creation most

effectively support learning of functional uses of variables and lists?When do they fall short?

We seek to answer these questions through two closely linked empirical studies that un-

packing practices, challenges, and opportunities for learning about variables and lists in

the Scratch online community.

3 EMPIRICAL SETTING

Scratch is a visual, block-based language programming language designed for children

[62]. Scratch programming primitives are represented by visual blocks that control the be-

havior of on-screen graphical objects called sprites. Scratch programs (commonly called

projects) are constructed by dragging and dropping blocks together. As a programming
9
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language, Scratch supports basic data structures in the form of scalar variables and vec-

tor lists (Figure 1a). Primitives to operate on variables and lists fall under the category

of “data blocks” in Scratch and their design are described in detail by Maloney et al. [53].

When using a variable or list, Scratch users assign each variable a name by entering a

user-defined string to the block (referred as “variable name” or “list name” in this pa-

per). Previous work by Dasgupta et al. [18] estimates that less that 15% of Scratch users

will ever make projects using data. Variables in Scratch have two forms which share a

grammar: (1) conventional variables and lists which are local to each instance of a run-

ning project; and (2) cloud variables which are persistent across multiple executions of

a project and shared across users [16]. Cloud variables are only accessible to established

members in the Scratch online community through a complicated and undocumented

process [20].

Scratch is situated within an online community where anyone can sign up and share

their projects, comment on, “like” and bookmark others’ works, and socialize through

forums [58].1 As of 2021, the Scratch online community has over 65 million registered

users, and over 68 million shared projects that span a diverse range of genres and themes.

In addition to providing toolkits for children to create projects and experiment with pro-

gramming, the Scratch community supports social interactions such as appropriation

1https://scratch.mit.edu/
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(through remixing and downloading), social connection (through “loving,” “favoriting,”

and bookmarking projects and through following users), and discussion (through com-

menting and participating in discussion forums). The large majority of Scratch users are

between 8–16 years old and the average age for new contributors is around 12.2 Although

our data might include adults, we follow other scholarly accounts and refer to Scratch

users as “kids” [e.g., 38]. We draw data from both the Scratch community itself and its dis-

cussion forums, shown in Figure 1b. These forums comprise a number of topical forums

organized into categories such as “Making Scratch Projects” and subcategories such as

“Help With Scripts” or “Project Ideas” [66].3

4 RESEARCH ETHICS

This research relies on two sources of public data and included no intervention or inter-

action with subjects. Although the data in our qualitative analysis (§5) are public posts

in the Scratch forums, we sampled from these posts using keyword searches of a copy

of the Scratch Forums database in a way that the public could not do easily. We have

obscured users’ identities by replacing usernames with alphanumeric identities and by

following advice from Markham [54] and reworded quotes to make it more difficult to

identify Scratch users using simple web searches. The first two parts of our quantitative

2All statistics about Scratch community activity and users are taken from the public information on: https://scratch.mit.edu/statistics/
3https://scratch.mit.edu/discuss/
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analysis of the Scratch code corpus in §6 relied on data that the Scratch team has pub-

lished as part of the Scratch Research Dataset and is fully reproducible [34]. This work

was reviewed and overseen by the IRB at MIT as part of a broader protocol covering ob-

servational studies of Scratch. Our institutional IRBs delegated oversight of the work on

this project to the MIT IRB.

5 STUDY 1: THEORY DEVELOPMENT

To understand when Scratch best supports learning about the functional uses of variables

and lists, we began with an open-ended interpretive analysis. This study sought to build

a theory about kids’ practices learning and engagement in discussions about simple data

structures.

5.1 Methods

To build a dataset for our qualitative analysis, we first generated a sample of 400 discus-

sion threads about variables and lists from the Scratch discussion forums. Because we

were interested in how kids learn to make projects with variables and lists by engaging

in learning resources curated in discussion, we limited our sample to two subforums that

emphasized question asking: Help With Scripts and Questions about Scratch. We chose to

study forum threads instead of the more widely used project comments because previous
12
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work suggested that only a small number of comments were related to problem solving

[68]. The dataset that we used for sampling contains discussions from October 11, 2012,

to April 5, 2017.

To acquaint ourselves with our setting, we had spent several weeks browsing the fo-

rums. As part of this process, we realized that many users struggling with problems re-

lated to variables and lists did not yet have the terminology to describe their problems as

related to ‘data blocks,” “variables,” and so on. To include a broad range of conversations

about data in the Scratch forums, we followed advice from Trost [73] to build a “statis-

tically non-representative stratified sample” to ensure that a range of different ways of

talking about data were reflected in our sample, but without concern for their prevalence.

To do so, we sampled threads in three stages using different keywords. The distribution

of the threads sampled in each stage is summarized in Table 1. First, we randomly sam-

pled 100 threads from titles containing the keywords “variable,” “list” and “data.” Second,

we sampled 10 random threads each from the 11 most common variable or list names for

110 threads total as identified in an analysis of the Scratch code corpus by Dasgupta [17].

These terms included “high scores,” “lives,” “inventory,” “leaderboard,” “speed,” “timer,”

“counter,” “words,” “points,” “velocity,” and “answers.” Third, to further increase diversity

in our dataset, we randomly sampled two threads with each of the other top 100 variable

and list names. This step resulted in an additional 200 threads (half of the total sample).
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Stage Keywords Number of threads sampled
1 "variable", "list", "data" 100
2 11 most common variable or list names 110
3 Top 100 variable or list names 200
Total threads sampled (duplicates removed): 400

Table 1. Number of threads sampled in each stage.

We only included threads with more than a single post because we wanted to ensure

that the thread contained at least some form of a discussion. All together, these sampling

steps resulted in 410 threads. Because 10 threads were included in more than one of our

samples, we ended up with a total of 400 threads that contained 2,790 posts and 963,593

words of content—equivalent to 547 pages of single-spaced text.

We analyzed our data Charmaz’s [13] approach to constructing grounded theory. Led

by the first author, we coded our data threads both line-by-line and incident-by-incident

using a process of open coding. Following Charmaz, we also used a small number of

“sensitizing codes” drawn from existing theories. We followed an iterative process that

involved repeatedly discussing coded data as a team, conducting axial coding to group

codes into themes and meta-themes, writing and discussing memos, and then returning

to recode our data. Our findings reflect the content of the memos written about the major

themes that emerged at the end of our analysis.
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5.2 Findings

Our grounded theory analysis resulted in three major themes. First, we discovered evi-

dence that learners, driven by specific interests in game-making, tend to adopt specific

functional uses of variables and lists when making projects. Second—and as a result of

the first finding—we found that user-generated learning resources about variables and

lists are framed around those specific examples of functional uses. Finally, we identified

a trend that those specific examples can become archetypes and restrict the breadth of

functional uses in the community. These findings provide support for a grounded theory

about how interest-driven content creation can limit learning opportunities that we will

propose in §5.3.

5.2.1 Learners create projects with functional uses of variables and lists specific to their

interests in game-making. We found that Scratch users were often introduced to variables

and lists when they engaged in discussions about specific elements in the projects they

were making. Because kids usually had specific goals for their projects in mind, but little

knowledge about how to realize those goals in code, they would describe the particular

thing they wanted to do when they sought help. The concepts of variables or lists would

typically be brought up by someone serendipitously in the thread. Although a quarter of
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the sample did not select on variable names at all and half included threads with 100 dif-

ferent variable names, game-making was an almost ubiquitous topic of discussion. Over

and over, we observed kids phrasing their questions in terms of game-related goals in

discussions in which variables and lists were eventually brought up. In the following

sections, we discuss the canonical game-related use cases for variables, lists, and cloud

variables (described in §3) in turn.

Variables: Two examples of common game elements that kids like to make in Scratch

are score counters and animations. Score counters are a game element that keeps track

of a player’s score or remaining lives. Although this game element is broadly familiar

to Scratch users, a user seeking to implement a score counter for the first time may not

know about the concept of a variable. Indeed, it is not always even obvious to users who

know about data blocks in Scratch that a variable is an appropriate way to keep track of

a changing quantity. Furthermore, it can be challenging for kids to implement a counter

and integrate it into their program. For example, a kid (K1) posted in a Scratch forum: “I

would like to know how to add lives in my game. I want it so that whenever the main

character touches a ghost, it would lose one life.” In interactions like these, users would

introduce variables and their functional use as a score counter. In this case, a reply (from

K2) suggested that they “create a variable with the name lives” and use it to control the

visual elements that represent the character’s lives. Although carefully scoped to the
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specific problem faced by the user, the reply highlighted the role of variables in tracking

changes.

Another common pathway to learning about variables was making animated objects in

games. Animation frequently relies on variables because it involves changing the speed

or size of objects when triggered by certain conditions. For instance, one kid asked:

I’m making a pong game where I want to add a control to tell the ball to go

faster. Is there a button for this? If not, how can I make this work? (K3)

K3 arrived to the Scratch forums knowing that they wanted to vary the speed of a pong

ball. For them, the challenge was not using variables per se but the specific case of making

a ball move at a range of different speeds. Responding to their question, another kid

pointed to using variables:

Somehow, you must tell the ball to move. Make sure you use a variable. Like

use ‘move [speed] steps’ rather than ‘move 5 steps’. Then you just need to set

your variable to the speed you like. (K4)

This response suggested that the kid asking the question use variables and told them

how (as a place holder for the value of speed in the “move” operation). In these examples

and many others, we saw that variables—both the concept and the term—almost never

appeared in learners’ initial questions. Instead, learning resources about variables existed

in answers to questions about score counters, animation, and other game elements.
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Lists: We found a similar pattern for the list data structure. Frequently, kids were in-

troduced to list data structures when trying to figure out how to make inventories—a

game element with which players can store and retrieve items. For example, K5 asked:

“Does anyone have an idea how to make a good inventory for a game?” and received this

answer from K6: “You can use the list block to store your items in the inventory.” In an-

other example, K7 said,“Allllllright so I’m making an inventory for game (who wouldn’t

want one?) so I don’t know how to make one. Can anybody help?” These kids were all

pointed to list blocks. Discussions like these played out repeatedly in the forums, helping

kids who were struggling to build inventory features connect the abstract concept of a

list with its functional use of storing multiple game items.

As in the variable examples above, kids imagined how an inventory would be used in

the context of their games. For example, they described backpacks in which the player

could select weapons or a pool of correct answers in a quiz game. These kids also imag-

ined rules describing how a player shouldmanipulate items in the inventory. For example,

K8 wanted to make a weapon inventory to hold “basic armour” and hoped to “make the

player lose less blood when he/she has those items.” After sharing these ideas, they re-

ceived suggestions to put a list data structure within an “if else” statement. Cases like this

suggest that building inventories allowed kids to learn not only about how to populate

and read from lists, but also about basic list operations including deleting and appending

18
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items and about conditions and loops. In some cases, more advanced learners would de-

scribe methods for fulfilling complicated features that a novice imagined as features of

their inventory:

K9: I am making a game where you can buy food and eat it. I want it so you

can delete a certain food item from a list... so when you click, the sprite called

‘Strawberry Popsicle’ disappears, but also the name ‘Strawberry Popsicle’ dis-

appears from the list too.

K10: You need to search in the list and find the item that you want to delete.

You can just look at each item in the list and compare it to the one you are

looking for. Then you stop when you find it or get to the end of the list. This

is called a sequential search. [Example code to solve the problem]

This thread shows how relatively sophisticated algorithms were explained in terms of

very specific use cases, often with example code. By exchanging ideas about inventories

in games, kids introduced each other to lists, their function, and the way they could be

used. As with variables, these conversations typically remained focused on the specific

use case of games.

CloudVariables: A final example extends this pattern to cloud variables (see §3). Cloud

variables’ ability to store data in ways that are persistent and shared were essential for

users building “leaderboards” or “high score” systems that could record, rank, and display
19
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scores from multiple players—e.g., “a leaderboard in which the highest scores of every

player of the game could be saved” (K11). As in the examples about variables and lists

above, discussions about leaderboards often involve pointing out the existence of cloud

variables, the differences between local and cloud data, and ideas about how to write code

to use both. As with lists, these conversations often segued into advanced programming

topics like the encoding and decoding of strings.

In all three cases, specific use cases became linked to specific data structures—variables

with counters and animation, lists with inventories, and cloud data with leaderboards.

Because questions tended to focus on these types of elements, discussions about solu-

tions did as well. Through this process of user-to-user support, kids learned how to ap-

ply data structures through an informal and unstructured manner. As we describe in the

next section, both these conversations and the games that Scratch users created with

the knowledge they built acted as learning resources about variables and lists that were

subsequently used by other learners in the Scratch community.

5.2.2 User-generated learning resources about variables and lists are framed around spe-

cific examples of functional uses. One feature of informal online learning environments

is that conversations and solutions act as learning resources for subsequent participants

20
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facing similar challenges. In ways that are visible in our examples in §5.2.1, both the ques-

tions posed and the answers provided in our sample tended to focus on specific game-

related functional uses. As a result, learning resources about how to use variables and

lists tended to be situated in the context of games. These resources rarely engaged with

the more general concepts behind data structures. For example, the following threads

show a discussion on how to change the speed of a ball using variables:

K13: Can someone help me figure out how to change the speed of the ball when

it hits the paddle a certain number of times?

K14: You can make a variable called HITS, set it to 0, change it by 1 every time

you hit the paddle. When it gets to the number you like, change costume and

set counter to 0.

In this exchange, K14’s answer describes exactly what K13 should do to solve their prob-

lem that is specified down to the names of variables. While this answer almost certainly

solved K13’s problem, it did not explain either the functional or structural use of vari-

ables. Discussions like this produce learning resources that are extremely specific to the

question askers’ use case.

We found then when helping others use variables, kids would often refer to popular or

example projects that contained working code. For instance, K15 asked “how to make a

counter for scores using a sprite making clones of itself” and was directed by others to
21
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an established code chunk “changeScore method” in an existing project. In some cases,

kids with more advanced knowledge would post snippets of working code:

K16: So I have a chat game, when “hello” is clicked, the robot would say “hello”.

I wonder how to make the robot say like a option of things such as “hey” or

“yo” instead of “hello” all the time?

K17: Put all the hello, hey words in a list then use this code: say (item (random

v) of [list v])

Although these are heartening examples of kids collaborating with and mentoring each

other, the utility of the resources created is remarkably limited. The solutions typically

offered by kids in our data were so specific—and almost always related to game elements—

that they would be unlikely to help a novice learner build a conceptual understanding of

data structures. If a kid with a specific problem solvable with variables were to browse

the discussion threads we analyzed, they would likely not be able to understand how

variables could solve their problem unless they were making exactly the same game as

someone posing a question in our sample.

Furthermore, kids offered codemight be able to use it without actually understanding it

[65]. Indeed, we saw kids request working solutions and others who seemed particularly

happy receiving code that could be copy-and-pasted into their programs. For instance,

K18 hoped the effect that they want in their game could be made into a code block: “Does
22
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anyone know how to make a smooth jump script? If you can make it into a custom block

that would be great.” In another example, K19 described the specific effect they wanted

and expressed hope that someone could write the code for them:

I want to have a list that has these items: ham, cheese, egg, butter... I need it to

find egg and read out it’s number in the list. Is there a working script for this?

(K19)

This post was followed by a code snippet that was directly workable and had variables

named as K19 imagined them.

These examples are part of a broader pattern we observed in the Scratch forums. To

support kids like K18 and K19, the Scratch community creates solutions that are directly

applicable to particular use cases. While these responses help kids overcome their prob-

lems quickly, directly workable solutions can mean that kids may not be able to see the

broader picture of how variables and lists can be used. Because learning resources in com-

munities like Scratch consist of questions and solutions accumulated over time, these ex-

amples show how community-generated learning resources can focus on specific issues

in individual use cases instead of general knowledge applicable to the whole community.

We explain in the next section how this high degree of specificity in knowledge resources

can result in adverse learning experiences for some.
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5.2.3 Specific examples become archetypes and restrict the breadth of functional uses in

the community. As a result of using learning resources framed around specific examples

of functional uses, many of the Scratch users in our forum dataset appeared to have a

limited understanding of what variables and lists could do. This restricted understanding

in the broader community meant that even users without an expressed interest in games,

or in some specific types of games, were often presented with resources based on them.

For example, a user expressing curiosity about data blocks in very open-ended terms

receives an answer that directs them to the specific functional use as a score counter in

a game:

K20: I think data blocks can be useful in my projects, but I don’t know how to

use them.

K21: You are saying variables and lists? For variables, they are just ways to

name and store things. So if you make a game and want to keep the score then

you’d create a variable called score.

Although K20 did not express any interest in games, K21’s response focused exclusively

on them.

This reliance on canonical use cases was particularly obvious in discussions about more

advanced cloud variables. For example, in the beginning of one thread, a kid first asked
24
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how cloud variables could be used without reference to any particular goal. Both re-

sponses they received assumed that the question was about making a game leaderboard:

K22: I have no idea what cloud variable is but I heard you could make multi-

player programs with it.”

K23: They are shared by 2+ instances of your game. If you make a very simple

game in which you add 1 to a cloud variable when a sprite is clicked. Save your

game. Then open the game in two new windows in your browser.

K24: They are usually for High Scores and Multiplayer Games.”

Although K22 signalled that they were open to exploration, the answers they received

from K23 and K24 reinforced a set of goals and interests. Although scoring systems and

leaderboards are popular in Scratch and can provide a powerful entrée to data structures,

the myopic focus on these functional uses in Scratch forum would be unlikely to serve

kids who have no interest making scores, leaderboards, or games.

Indeed, we found that kids with interests that deviated from canonical use cases were

challenged finding learning resources that fit their interest. For instance, when K25 posed

a very general question about “how to use cloud variables to save data from users,” other

kids tried to help them by posting examples of a high score system that involves cloud

variables. In amore general thread about cloud data, K25 expressed confusion because the

solution for a high score system did not fit their own goals and said, “but my game isn’t
25
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one of those scoring games. I want to make a storyline game.” K25’s experience revealed

what much of the Scratch forums community takes for granted. Sadly, K25 ended up not

receiving help in the thread. Over time, their post was lost and ignored in a torrent of

more typical messages—a large majority about leaderboards.

Unsurprisingly, we found that certain functional uses became Scratch forum’s go-to

examples for explaining variables and lists. It is not hard to imagine that, because learning

resources were built cumulatively, more projects with these functional uses of variables

and lists would be created over time. These new projects, in turn, became new learning

resources for new learners. Learners who wanted to explore different use cases could do

so, but had fewer relevant resources to guide them.

5.3 Synthesis: A theory of social feedback loops in interest-driven online

learning communities

Our findings echo Papert’s [60] emphasis on “personally powerful ideas” and Ito et al.’s

[39] description of interest-driven, community-based learning.We found that kids aremo-

tivated to use variables and lists to solve problems and make projects they are passionate

about and leverage content shared by others in the community to facilitate learning of

these challenging computational concepts. Because learners making projects in Scratch

are typically working with specific goals in mind, they run into the need for variables and
26
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lists while trying to implement specific functionality. They get tutored by peer-produced

learning resources framed in terms of those specific functionalities. In this sense, we

contribute to both literature of computational participation and computing education by

describing that interest-driven content creation can be a potential pathway to support

learning of functional uses of complex computing concepts.

Unfortunately, we also discovered a unintentional side effect of this type of learning.

We identified that because community-generated learning resources in the form of Q&A,

tutorials, and project examples tend to be directed toward specific functional uses, those

that represent common interests can become canonical, leaving less room for unconven-

tional interests. This leads to the possibility of a restricted set of functional uses, which

can lead to shallow understanding of underlying concepts and to exclusion of learners

with different goals and interests [65]. In our sample, the almost exclusive focus on cer-

tain game elements such as score counters in conversations about variables in Scratch

raises concerns about whether learners who are not interested in making these elements

will be well served by community-generated resources. Furthermore, we observed that

kids who started with no specific preference and open to explore different functional uses

are pointed to the canonical use cases. Overtime, this practice can make canonical exam-

ples even more archetypal, while result in user-generated content more homogeneous

and less innovative.
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Fig. 2. Hypothesized social feedback loop in interest-driven online learning communities

Inspired by the existing body of literature on network-based and social processes that

lead to increased concentration of resources over time, such as the Pareto principle [43],

preferential attachment [2], and the Matthew effect [57], we theorize that this process

plays out as a social feedback loop. Our social feedback loop theory is situated in the

context of interest-driven online informal learning and can be summarized as follows:

interest-driven content creation can result in certain types of creation becoming archetypes,

making community-generated learning resources more homogeneous and only support an

increasingly limited set of learner interests over time.

This theory is visualized in Figure 2. Stage 1 suggests that in an online interest-driven

learning community, some types of creation (Use Case A) will be more popular than oth-

ers and that more users will tend to create artifacts with Use Case A than other user cases.
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This may be due to initial user base homogeneity, targeted recruiting, examples used in

documentation, and so on. The arrow pointing from Stage 1 to Stage 2 captures the pro-

cess of learners running into problems and seeking community support. We argue that

users will tend to ask questions framed specifically around Use Case A and draw inspira-

tion from others’ artifacts with Use Case A. Stage 2 shows the results of this process. As

learners successfully receive support, they produce new artifacts with Use Case A that

can serve as learning resources for others. The arrow on the top of Figure 2 pointing

from Stage 2 back to Stage 1 shows how subsequent learners draw inspiration and sup-

port from these accumulated learning resources and, as a result, become even more likely

to create artifacts with Use Case A in the future. The box on the bottom of Figure 2 cap-

tures the outcome of the feedback loop based on our findings from §5.2.3. As Use Case A

becomes a archetype, the community’s collective learning resources can be restricted to

Use Case A. Learners like K25 in §5.2.3 who have a different interest and want to pursue

new and innovative use cases receive less support. Over time, innovative use cases can

become less prevalent.

6 STUDY 2: THEORY TESTING

Because the goal of our qualitative grounded theory methodology in §5 is to develop

new insights, its ultimate findings are a set of untested propositions. In a quantitative
29
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follow-up study, we conduct tests of three hypotheses that we derived from the theoret-

ical model presented in §5.3 to help validate the theory. Our first two hypotheses focus

on the outcome of the feedback loop (marked as “H1” and “H2” on the bottom of Figure

2). The idea is that such a feedback loop will make use cases increasingly homogeneous

over time and disproportionally support a small set of interests.

First, we hypothesize that certain genres of projects involving simple data structures will

become more popular over time relative other genres. Specifically based on our findings

in Study 1, we hypothesize that (H1) over time, more projects involving variables and lists

will be games. As a second test, we hypothesize that certain functional uses of variables

and lists will be increasingly archetypal. Therefore, we hypothesize that (H2) the names

that users give to variables and lists will become more concentrated to archetypes over time.

While these hypotheses reflect what we would expect to see in aggregate if the hypoth-

esized social feedback loop were occurring, our third hypothesis attempts to capture part

of our hypothesized mechanism. Marked as “H3" on Figure 2, we speculate that users ex-

posed to archetypal use cases will create similar artifacts. Therefore, we hypothesize that

(H3) users who have been exposed to projects involving popular variable and list names will

be more likely to use those names in their own projects compared to users who have never

been exposed to such projects.
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6.1 Data

To conduct our quantitative analyses, we used the projects, project_strings, project_text

tables from the publicly available Scratch Research Dataset [34]. For testing H3, we uti-

lized one non-public column that records which users had downloaded others’ projects.

We restrict our analysis to projects created between September 2, 2008 and April 10, 2012

because affordances around data blocks were consistent during this period.4 The period

is earlier than the time window used in Study 5 based on differences in the datasets we

had ready access to. For analytical simplicity, we decided to only include projects with

variables and lists written in English. Finally, we restricted our analysis to de novo (i.e.,

not remixed) projects. This resulted in 241,634 projects that contained one or more vari-

ables authored by 75,911 Scratch users, and 26,440 projects that contained one or more

lists authored by 12,597 users. We created both project-level and user-level datasets with

a range of metadata available in the Scratch Research Dataset [34].

6.2 Analysis and Measures

To testH1, we used a project-level dataset to assess whether there is an increase over time

in the proportion of gameswith at least one variable/list in the community. To ensure that

our assumption of games being a predominant genre of project was correct, we randomly

4https://en.scratch-wiki.info/wiki/Scratch_1.3
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subsampled 100 projects with variables and 100 projects with lists. Two coders classified

these projects as “game” or “non-game” and reached high inter-rater reliability (Cohen’s

𝜅 = 0.88). We found that 65% (CI = [54%, 74%]) of projects with variables and 52% (CI =

[41%, 62%]) with lists were games. 5 This reinforces our sense developed in Study 1 that

games reflect a dominant genre of Scratch projects containing variables and lists. It also

gives us confidence in our decision to use a measure of the prevalence of games over time

to test our theory that popular genres of projects involving data will become increasingly

popular. Because it is difficult to manually identify games in our large dataset of projects,

we define projects as games if they contain the string “game” or “gaming” in their titles or

descriptions. To validate this inclusion criterion, we again hand coded random samples

of projects as follows. We first created four random samples: 100 projects with variables

and at least one of the strings, and 100 similar projects without the strings; two similar

samples of 100 projects with lists. The same two coders coded all 400 projects as game

or non-games. Among the projects that contain variables, we found that 88% (CI = [80%,

93%]) projects with strings “game” or “gaming” were games, while only 48% (CI = [38%,

58%]) projects without those strings were. We found a similar pattern among projects

with lists, where and 85% (CI = [76%, 91%]) and only 31% (CI = [22%, 41%]) projects were

games, respectively. In other words, our definition of games using the strings “game”

5Numbers within brackets are 95% confidence intervals computed using Yates’ continuity correction.
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and “gaming” would result in high precision and low recall. Because our goal with H1 is

to study change over time rather than baseline prevalence, low recall is not necessarily

problematic as long as it is consistent over time.

To test H1, we performed a logistic regression on the odds of a project with vari-

ables/lists being described as a game where the year in which the project was created was

our independent variable. We included month-of-year fixed effects to control for season-

ality. We used a linear specification of time because exploratory data analysis indicated

that curvilinearity was unlikely a major concern.

To testH2 that there will be increasing concentration in variable/list names over time,

we operationalize “concentration” as the Gini coefficient of the distributions of variables

across names for each week of data we collected [11]. Originally invented to measure

wealth inequality in a nation, Gini coefficients range from 0 representing equality (if

every variable names are used in an equal number of projects) to 1 reflecting perfect

inequality (if only one variable name were used). We performed a linear regression using

Gini Coefficient as our dependent variable and the same month-of-year fixed effects used

in H1 to control for seasonality. We used a linear specification of time for the same reason

we did in H1.

H3 seeks to test the effect of exposure to popular variable/list names on subsequent

behavior.We treated popular names as the 20most frequently used names for variables or
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lists. Because it is not possible to measure exposure directly, we used whether a user has

downloaded a project with popular variable/list names as a proxy. We do so because the

only way to access the source code of a Scratch project during our data collection period

was to download it. We used these measures in a survival analysis using Cox proportional

hazardmodels [69]. Originally developed in epidemiology, we follow the framework used

by Dasgupta et al. [18] who used Cox models to measure online informal learning. Our

models estimate the chance that a user in our dataset will share a de novo (i.e., non-remix)

project with a popular variable name for the first time as a function of the number of de

novo projects they have shared.

Our question predictor is a time-varying measure of whether the user has downloaded

a project with a popular variable name during our period of data collection. We also

include a control variable for the total number of downloaded projects to capture general

exposure to other projects in Scratch. We conducted the same analysis for lists.

6.3 Results

The results from our hypothesis tests provide broad but uneven evidence in support of our

theoretical model in §5.3. Figure 3a shows that, contrary toH1, the percentage of games in

projects with variables decreased slightly over time. The hypothesis test shown in Table

2 suggests that this weak relationship is statistically significant (𝛽 = −0.02; SE < 0.01;
34
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(a) Percentage of games among projects with variables. (b) Percentage of games among projects with lists.

Fig. 3. Percentage of games among projects with variables or lists, per week, from September 2008 to April 2012. Lines reflect bivariate
OLS regression lines.

Variable List
(Intercept) −1.09∗ −1.62∗

(0.02) (0.06)
Year −0.02∗ 0.06∗

(0.00) (0.02)
Month fixed effect yes yes
AIC 265143.06 26142.23
BIC 265278.19 26248.61
Log Likelihood −132558.53 −13058.12
Deviance 265117.06 26116.23
Num. obs. 241634 26440
∗𝑝 < 0.001

Table 2. Logistic regression models for the likelihood of a project including the term “game” or “gaming” in its title or description.
Models are fit on two datasets including all non-remix projects containing variables (𝑛 = 241, 634) and all non-remix projects
containing lists (𝑛 = 26, 440) from September 2008 to April 2012.

𝑝 < 0.01) and that each year is associated with odds that are 98% the odds of the year

before. On the other hand, our results for lists are in the hypothesized direction. Figure 3b

shows that the percentage of games among projects with lists has been increasing over

time despite month-by-month variation. The results of our logistic regression in Table 2

suggest that this relationship is statistically significant (𝛽 = 0.06; SE = 0.02; 𝑝 < 0.01).
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(a) Weekly Gini coefficients of variable names. (b) Weekly Gini coefficients of list names.

Fig. 4. Weekly Gini coefficients of variable and list names over time. Lines reflect bivariate OLS regression lines.

Variable List
(Intercept) 0.38∗ 0.11∗

(0.01) (0.01)
Year 0.02∗ 0.01∗

(0.00) (0.00)
Month fixed effect yes yes
R2 0.38 0.13
Adj. R2 0.34 0.07
Num. obs. 190 190
∗𝑝 < 0.001

Table 3. OLS time series regression models on the Gini coefficient of variables across variables names for all projects shared in Scratch
each week (𝑛 = 190).

The model estimates that the odds that a newly created project involving a list is a game

are increasing by 106% year over year. For instance, the model predicted probability of

a project with lists created in March 2012 being a game is 22.3%, while that of a similar

project created inMarch 2009 is 20.8%. There were 1,129 new projects with lists created in

March 2012. This means that we estimate that there 17 more list projects that were games

in thatmonth thanwewould have expected if there had been no increase in concentration

over the previous three years.
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User Risk of using popular Risk of using popular
variable names list names

Downloaded projects w/ popular variable/list names −0.07∗ 0.68∗
(0.01) (0.04)

log(number of 100 downloads) −0.12∗ −0.07∗
(0.02) (0.02)

R2 0.00 0.02
Num. events 52967 3790
Num. obs. 88327 17869
∗𝑝 < 0.001

Table 4. Fitted Cox proportional hazard models that estimate the “risk” that a Scratch user will share a de novo project that uses a
popular variable or list name for the first time, based on whether the user has downloaded a project with popular variable or list
names before. A positive coefficient means increased “risk.”

We found strong support for H2 that variable and list names would become more con-

centrated over time. Figure 4a shows differences in Gini coefficients over time for vari-

ables and Figure 4b shows the samemeasure for lists. Both figures clearly show increasing

concentration. Hypothesis tests from OLS time series regression models are reported in

Table 3 and reveal that these relationships are statistically significant for both variables

(𝛽 = 0.02; SE < 0.01; 𝑝 < 0.01) and lists (𝛽 = 0.01; SE < 0.01; 𝑝 < 0.01). We estimate that

the concentration across variables has increased from a Gini coefficient from about 0.41

in 2008 to 0.50 in 2012. For reference, this difference is similar to the difference in con-

centration of wealth between United States (0.41) and Zimbabwe (0.53). 6 In other words,

the distribution of variables names is quite concentrated among a few possible times and

is increasing quite rapidly over time. Although list names are much less concentrated in

general, they are increasing in concentration at a similar rate.

6https://data.worldbank.org/indicator/SI.POV.GINI
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(a) Model-predicted probability of having shared a project with a
popular variable name for two prototypical users who have/have
not downloaded such a project.

(b) Model-predicted probability of having shared a project with
a popular list name for two prototypical users who have/have
not downloaded such a project.

Fig. 5. Plots of model predicted estimates of the proportion for several prototypical users. In Figure (a), estimates are shown for
two prototypical users: (red) a user who has never downloaded projects with popular variable names, and (blue) a user who has
downloaded projects with popular variable names. Figure (b) is the same plot but for lists instead of variables.

Table 4 shows parameter estimates from our Cox models and shows mixed support for

H3. Although we hypothesized a positive relationship between exposure to and subse-

quent use of popular variable names, we find that our measure of exposure to popular

variables is related to risk of using them that is only 93% as high (𝛽 = −0.07; SE = 0.01;

𝑝 <= 0.001). On the other hand, users who downloaded projects with popular list names

are more likely to use those names in their own projects than those who did not. The

instantaneous risk of sharing a project with a popular list name for a user who down-

loaded at least one project with a popular variable or list name is 1.97 times higher than

another similar user who has never downloaded such a project (𝛽 = 0.68; SE = 0.04;

𝑝 < 0.001). The small negative effect of variables may be due to the fact that variables are
38
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used much more often than lists in Scratch so that kids simply have more opportunities

to be exposed to popular variable names.

Because Coxmodels are difficult to interpret, we present visualizations ofmodel-predicted

estimates in Figure 5. Each panel includes two lines reflecting prototypical community

members who downloaded one project before sharing projects with others: one prototyp-

ical user who had downloaded a project with a popular list or variable name; the other

who did not. Figure 5b shows that members who have previously downloaded a project

with at least one popular list name are more likely to use a popular list name in their

own subsequent projects. Figure 5b sows that our model predicts that ~50% of users who

have shared 5 de novo projects and who have never downloaded projects with popular

list names would have never used a popular name in their own projects, while only ~25%

of similar users who have downloaded such projects would not have. Although the neg-

ative effect effect is statistically significant, we do not see a similar effect with variables

in Figure 5a.

7 DISCUSSION: CHALLENGES & OPPORTUNITIES OF SUPPORTING

LEARNING THROUGH INTEREST-DRIVEN CONTENT CREATION

While researchers have long argued that interest-driven participation can allow learners

to explore and be creative [12, 46, 55, 58], we show how this type of participation can
39
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also create self-reinforcing social processes that lead to increasingly limited learning re-

sources. In our first study, we use data from the Scratch forums to build a grounded theory

describing a feedback loop that exists between learners’ interests and the resources they

create through engagement. This loop makes it easier for some users to learn about vari-

ables and lists—but in ways that are increasingly focused on a set of specific functional

uses that have been used extensively in the past. We test several hypotheses derived from

this theory in a series of quantitative analyses of the Scratch code corpus and find broad,

if uneven, support for the theory.

Our study contributes to the literature on computational participation by highlighting

a trade-off between interest-driven participation and learning about computational con-

cepts. On the one hand, our study shows that novice learners can learn functional uses

[22] of advanced computational concepts—for example, variables and lists—by engaging

in discussion and social support. On the other hand, we found that such learning is of-

ten superficial and rarely conceptual or generalizable. Echoing prior studies that concern

about the lack of depth in computational participation [29, 68], our study argued that

learners’ preference for peer-generated learning resource around a specific and narrow

set of interests can restrict exploration of broader and more innovative functional uses.

Although it is conceivable that a narrow set of archetypal use cases could be beneficial for
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learning in some contexts, increasingly homogeneous use cases stand in clear opposition

to the common design goal of broadening participation.

Although drawn from the specific data structures and project genres in Scratch, we

believe that our theory describes a common dynamic in informal learning environments.

In the rest of this section, we discuss three challenges for online learning communities

implied by our theory: (1) a decrease in the diversity of resources that novice learners

might draw inspiration from; (2) privileging participation by learners with a specific set

of interests; and (3) a lack of understanding of concepts that cover broad functional use.

We argue that these challenges represent opportunities for design.

7.1 Limited sources of inspiration

It has been argued that informal learning systems should offer “wide walls”—affordances

that support a range of possibilities and pathways with which learners can creatively con-

struct their own meanings [60, 63]. In the context of Scratch, previous research suggests

that novice learners show increased engagement when the walls are “widened” through

new design features [20]. Our findings describe how the unstructured nature of informal

communities can lead to overrepresentation of certain ways of applying knowledge—

effectively “narrowing” the walls.
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This narrowing is largely unintentional, in that learners interested in a common appli-

cation of a concept will produce long discussion threads and an abundance of examples

and tutorials of a real desire to help. And indeed, these examples frequently will help

others. A range of common social features in online communities might reinforce this

dynamic. For example, up-votes and likes may externalize the popularity of certain posts

[1], artifact sharing can draw attention to already-visible topics [14], and gamified re-

wards can incentivize already-popular styles [10]. In each case, these features may make

it difficult for learners to see beyond the limited set of popular use cases that the rest of

the community is presenting.

Inspired by the call made by Buechley and Hill [8], we suggest that future learning sys-

tems should offer affordances that empower learners to leverage the “long tail” of novel

use cases. Designers of informal learning systems should seek to help learners recognize

new use cases and examples. For instance, designers might highlight novel or unusual

projects and provide recognition and status to community members engaged in uncon-

ventional use cases. For example, the Scratch front page has a curated section designed

to showcase projects which could serve this purpose. Adaptive recommendation systems

might help learners broaden their sources of inspiration by directing them to topics and

genres that are different fromwhat they are familiar with. Community moderators might
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guide conversations toward novel perspectives when there has been enough discussion

of similar ideas.

7.2 Narrowed opportunities for participation

A related challenge is that increasingly homogeneous use cases might marginalize learn-

ers not interested in those topics in ways that lead to demographic inequality. A number

of studies have shown that the underrepresentation of learners’ interests and identity in

the community may give rise to a sense of being excluded or marginalized [8, 27]. For

instance, although many girls use Scratch extensively, there is evidence that girls are gen-

erally less interested in making games using the platform than boys [28, 35]. As a result,

game-specific learning resources related to data structures may make it easier for boys

to learn about data, on average. In that HCI researchers have built curriculum to teach

game-making in Scratch as a way of building up computational thinking [72], we are con-

cerned about the implications of this approach for users—disproportionately girls—who

are not interested in making games.

As a possible step to address this challenge, community designers might elicit users’ in-

terests and connect users with similar interests. The community might also match learn-

ers with different backgrounds and interests and motivate them to exchange examples

and feedback. Moderators could also deliberately offer more support and resources to
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users who want to explore less popular genres. For example, they might connect users

with unusual interests to experts in the community to make them feel welcomed. In the

past, the Scratch online community has had a “welcoming committee” designed to help

newcomers get started [64]. Our findings suggest a potential way to target these sorts of

efforts.

7.3 Confined understanding of broader knowledge

The final challenge involves helping learners acquire an understanding of underlying

concepts that goes beyond the specific use case they are interested in. Our findings are

consistent with previous research suggesting that when a group of people engage in

creative activities, they will generate less diverse ideas after having been shown popu-

lar examples [50]. Our findings also echo previous literature on creativity where people

tend to come up with similar solutions after being exposed to others’ work [50, 80]. Our

work provides more evidence that informal scaffolds like discussion messages and arti-

facts may not always help learners see the big picture or master a skill. Our findings are

consistent with prior work that suggests that although the ability to remix can provide in-

spiration and scaffolds [18], there may be tradeoffs in terms of the originality of remixed

projects [33]. Our study suggests that although community-produced learning resources
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may grow in volume over time, they may represent material for an increasingly narrow

set of functional uses.

We believe that this challenge points to a final opportunity for learning resource explo-

ration and search systems that offer novice learners scaffolds that focus less on specific

examples. For instance, hierarchical tagging and groupingmechanisms could be designed

to help novice learners understand the relationship between specific examples and higher

level concepts. In Scratch, a high level collection could be called “use cases of data struc-

tures,” and the subcategories could include games, story-driven projects, and artistic me-

dia projects. Additionally, the discussion forum could be seeded with prompts to support

the identification of underlining conceptual knowledge and to explicitly connect exam-

ples with humanmentoring [26], cognitive apprenticeship [37] and automatic annotation

[12].

8 LIMITATIONS

Scratch is used in many different languages and multi-lingual social content is common

[19]. Our work is limited in that it both our studies only consider English language con-

tent. We do not know what impact the multi-lingual nature of Scratch has on our anal-

ysis or if the dynamics that we observe for English are also present in other linguistic

subcommunities in Scratch. Our strategy to detect project genre in our test of H1 also
45
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suffers from language-related issues. For example, not all games have the words “game”

or “gaming” in their title or description and some nongame projects include the term. Ad-

ditionally, Scratch users learn from resources including project comments, tutorials, and

one-to-one mentorship both within and beyond Scratch community. Although we do not

make the argument that online discussion is the sole or primary way that kids learning

in Scratch, our focus on data from the Scratch forums in Study 1 means we might be

missing important social dynamics in these other places.

As we discussed in §5, our sample in Study 1 is nonrepresentative in ways that may

shape our findings. Because a quarter of our sample selects on the 11 most popular vari-

able/list names—and because these names mostly indicate game elements—our qualita-

tive dataset may be skewed toward game-making in ways that shape our findings in

Study 1. As a result, we disclaim any attempt at establishing generalizability to any pop-

ulation broader than our sample in Study 1. We also address this limitation in Study 2

with random samples and population-level data. In a related sense, although our quan-

titative study attempted to provide tests of our theory within Scratch, we cannot know

how our theory and findings will translate to other contexts. We share our work with the

hope that future scholars will build on and critique our work by testing these theories in

communities that they study.
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Another set of limitations stems from our reliance on imperfect proxy measures in

Study 2. For example, we use downloads as a measure of exposure to test H3 because

downloading was the only way to view the source code of a Scratch project before 2013.

That said, users might download projects to deal with a slow internet connection or for

a range of other reasons.7 Although we feel confident that downloads will be correlated

with exposure, we have no way of knowing why a user downloaded any given project.

Similarly, and like most other studies of informal learning online we can only observe

learning experiences and not outcomes. Measuring learning outcomes in a community

like Scratch is difficult because learners come with different interests and aspirations and

take different paths. Although we measure the presence or absence of data structures in

projects, we can not know whether data blocks are being used correctly or whether the

project creators understand them [65].

Finally, although we theorize that there is a causal link between our proposed social

feedback loop and increased homogenization of community-produced learning resources,

we present no causal evidence. For example, our test of H3 provides evidence of a corre-

lation between exposure to popular list names and an increased likelihood of future use

of those names. This relationship might be due to variables that are correlated with, but

not caused by, a social feedback loop like the one we describe. The evidence we present

7https://en.scratch-wiki.info/wiki/Project_Downloading#Benefits_of_Downloading_Projects
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in Study 2 should be interpreted as similar to what we would expect to find if our theory

were true. Nothing more.

9 CONCLUSION

Our work contributes to HCI and social computing research by presenting mixed method

evidence of a problematic, but previously untheorized, feedback loop caused by unstruc-

tured resource creation in interest-driven informal learning environments online. Al-

though a growing body of evidence has shown that these systems reflect increasingly

important modalities for learning and that interest-driven participation can act as a pow-

erful catalyst, these systems do not work as well as they might for every user. Our work

describes how informal learning communities might find it harder to serve users who

interests are outside the mainstream of their communities. Most importantly, our work

points to several promising paths forward for designers of these systems. The problems

we highlight reflect several ways that informal online learning communities could more

effectively realize their incredible promise. We hope our work furthers that goal.
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