
Cooperation in Parallel
A Tool for Supporting Collaborative Writing in Diverged Documents

by

Benjamin Mako Hill

B.A., Hampshire College (2003)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Masters of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author
Program in Media Arts and Sciences

August 10, 2007

Certified by
Walter Bender

Senior Research Scientist
Program in Media Arts and Sciences

Thesis Supervisor

Accepted by
Deb Roy

Chair, Departmental Committee on Graduate Students
Program in Media Arts and Sciences

2

Cooperation in Parallel

A Tool for Supporting Collaborative Writing in Diverged Documents

by

Benjamin Mako Hill

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on August 10, 2007, in partial fulfillment of the
requirements for the degree of

Masters of Science in Media Arts and Sciences

Abstract

This thesis builds on theory from the fields of computer supported cooperative work and com-
puter supported collaborative writing and the example of work in the free and open source soft-
ware development communities to describe “cooperation in parallel” — a mode of collaborative
writing among parties with diverged goals and distinct documents. It examines the social and
technological requirements of cooperation in parallel for writing and considers the effectiveness
of existing technologies ability to address them. It then presents the design and evaluation of
TextNet: a wiki for document writing that uses techniques from software development including
branch creation and tracking features and introduces a text-specific interface for merging changes
and representing and resolving conflicts. It concludes by arguing that TextNet makes important
steps toward the support cooperation in parallel for writing.

Thesis Supervisor: Walter Bender
Title: Senior Research Scientist, Program in Media Arts and Sciences

3

4

Cooperation in Parallel

A Tool for Supporting Collaborative Writing in Diverged Documents

by

Benjamin Mako Hill

The following people served as readers for this thesis:

Thesis Reader
Chris Csikszentmihályi

Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Thesis Reader
E. Gabriella Coleman

Assistant Professor of Culture and Communication
New York University Department of Culture and Communication

5

6

Contents

Abstract 3

1 Introduction 11

2 Extended Examples 13
2.1 J8 Summit . 13
2.2 Wikipedia Stable Versions . 15
2.3 Wikinews . 17

3 Theory 21
3.1 Computer Supported Cooperative Work . 21
3.2 Revision Control for Software and Text . 24
3.3 Distributed Source Control Management . 25
3.4 Cooperation in Parallel . 28
3.5 CIP for Writing . 31

4 Writing and Writing Code 33
4.1 Coded Communication . 34
4.2 Code and Aesthetics . 35
4.3 The Particulars of Programming . 37
4.4 Divergence and Collaboration . 39

4.4.1 Divergent Goals . 39
4.4.2 Common Process . 40
4.4.3 Ability to Diverge . 42

4.5 Synthesis . 43

5 Related Technologies 45
5.1 Distributed Source Control Management (Bazaar) 45
5.2 Source Merge Tools and Modes (Emacs) . 51
5.3 Wikis (Mediawiki) . 53
5.4 Track Changes (Microsoft Word) . 55
5.5 Building on Related Work . 57

6 Design 59
6.1 Branch Accounting . 60

7

6.2 Difference Computation and Representation . 65
6.3 Conflict Resolution . 67
6.4 Wiki Interface . 68
6.5 Technical Design . 71
6.6 Design Timeline . 72

7 Evaluation 75
7.1 Engineering Evaluation . 76
7.2 Usability Review . 76
7.3 User Tests . 77
7.4 Lessons Learned . 80

8 Conclusion 81

8

List of Figures

3-1 Breakdown of collaborative writing work modes (Adapted from Lowry et al. [48]
and from Ellis, Gibbs, and Rein [24]) . 22

3-2 Visualization of a simple branch . 25
3-3 Visualization of simple branch and the merge process back into the trunk 26

5-1 Visualization of Debian and Ubuntu’s parallel development relationship (Adapted
from Scott James Remnant) . 46

5-2 File containing lorem ipsum text . 47
5-3 File containing the “diff” of the lorem ipsum text with a version without the first

sentence . 48
5-4 File containing the representation of a conflict after a merge in Bazaar 49
5-5 Screenshot of the Olive front-end to Bazaar . 50
5-6 Screenshot of the Emacs EDiff main window . 51
5-7 Screenshot of the Emacs EDiff control panel . 52
5-8 Example “diff” of a set of changes between two versions of wiki page in Wikipedia

running the Mediawiki wiki software . 53
5-9 History page for an article in Wikipedia running the Mediawiki wiki software . . 54
5-10 Screenshot of Microsoft Word showing changes made to a document 56

6-1 Bazaar branches in a simple “star” topology . 61
6-2 Bazaar branches in a more complex topology of “nested” stars 61
6-3 Screenshot of TextNet’s “Branch” tab . 63
6-4 Create new page in TextNet . 64
6-5 Visualization of two documents being worked on in parallel. 65
6-6 Word-by-word “diff” in TextNet . 66
6-7 Displaying conflicts in TextNet . 67
6-8 Conflict resolution within a paragraph in TextNet 69

9

10

Chapter 1

Introduction

New technologies for ad hoc and distributed collaboration have already transformed the way that

software is produced. In The Cathedral and the Bazaar, Eric S. Raymond famously attributed the

success of Free and Open Source software (FOSS) to intense, non-hierarchical, largely volunteer

collaboration [58]. In his books on FOSS development methodologies, Karl Fogel attributes

this successful collaboration, in part, to technical facilitation and, in particular, to source-control

management (SCM) [26, 27].

Wikis have employed ideas and technologies originally employed for software development to-

ward the successful support of collaborative writing on the web. In this thesis, I will explore

the way that technology developed to support software development can be applied to the pro-

duction of document-writing. In particular, I will describe the application of principles derived

from programming communities who have created a new set of technologies called distributed

source-control management (DSCM), designed for software development, to writing. I will argue

that these tools facilitate an important new mode of collaboration. This new model of coopera-

tive work, cooperation in parallel (CIP), describes joint work in groups working toward divergent

ends. The result is that groups working toward separate goals can collaborate and contribute to

each others projects in ways that strengthen and bolster their individual projects.

In the Chapter 2, I give three extended examples that demonstrate the utility of CIP. These diverse

examples highlight the core issues, theoretical concerns, and design principles that inform this

11

work and serve to ground the work in important real-world problems. In Chapter 3, I give a short

overview of relevant theory and background from the fields of computer supported cooperative

work (CSCW) and computer supported collaborative writing (CSCWr) and discuss SCM and

DSCM technologies. I use the example of SCM and DSCM in software to show how DSCM is

facilitating CIP and to suggest reasons why CIP is not currently practiced in writing communities.

I offer a more reflective anthropological examination of the social differences between writing

and writing code — a topic that underlies and effects much of my work on this project — in

Chapter 4. In Chapter 5, I examine four widely used cooperative writing technologies — each

representative of a class of tools — and explore the way that these technologies support and hinder

CIP in writing. In Chapter 6, I describe the design and evaluation of TextNet, a system I have

designed and implemented to support CIP for writing. Before concluding in Chapter 8, I present

the results of evaluation of that system in Chapter 7.

12

Chapter 2

Extended Examples

Wikis provide a widely used platform for ad hoc, asynchronous, collaborative writing. As such,

they provide both an obvious point of departure for the technical design of tools to support

CIP in writing and an example of a tool whose communities may be well served by CIP. Tools

supporting CIP for writing have applications in a variety of fields and communities. This chap-

ter highlights three such communities currently struggling with traditional wikis in extended

descriptions that serve to demonstrate both the scope and the details of problems that CIP ad-

dresses.

2.1 J8 Summit

The governments of Canada, France, Germany, Italy, Japan, Russia, the United Kingdom and the

United States participate in the Group of Eight (G8) international forum which holds an annual

ministerial meeting hosted by one of the participant countries and attended by heads of states

representing each of the participant governments [50, 6]. The Junior 8 (J8) is designed to be a

similar forum for children and young people of the G8 countries. In addition to hosting eight

students between the ages of 13 and 17 from each G8 country, the conference is attended by ten

additional delegates from the developing world. The most recent J8 was held between June 2 and

June 9, 2007 in Wismar Germany [7, 71].

13

The goal of the J8 summit is the production of a series of “communiqués” by the student at-

tendees on the subject of the global issues on the G8 agenda. Even in the process leading up

to the conference, delegates are expected to write together as they research and prepare for the

production of communiqués. The work at the most recent J8 was coordinated in a wiki — a

modified version of the python-based MoinMoin hosted by UNICEF in New York City. Stu-

dents needed access to the Internet while adding or modifying content to the wiki — a fact that

limited involvement by delegates with less regular access to Internet connections.

Upon arriving at the J8, each student was given an early production version of the One Laptop

per Child XO-1. However, while students were able to write on their laptops, the UNICEF J8

wiki remained the official site for collaborative work. As a result, students were only able to

access the latest versions of documents while connected to the Internet. This proved problem-

atic as the Internet connections at the conference were inconsistent and unreliable. While the

conference was hosted in a library in Wismar with an ISDN line, students were only present at

the library for 6 hours each day. Much of the rest of the time, the students were at their lodging

venue — a steel-hulled boat moored in the Wismar harbor. Not only was there no Internet con-

nection on the boat until one of the final days, the steel hull prevented the students’ laptops from

communicating directly with each other.

The mode and organization of collaborative writing at the J8 was largely ad hoc. Students picked

or were assigned issues they felt passionate or knowledgeable about; most focused their energy

on a small number of issues, and made smaller contributions on other issues. Students worked in

small stable groups on a section or part of a larger document. For the most part, students were

not assigned roles and were not given rules on what or where they should contribute.

Because so much of the conference happened while disconnected from the Internet — and by

extension, from the UNICEF J8 wiki in New York — students wanting to work on something

offline would have to create an “offline” copy. By doing so, they would run a high risk of creating

conflicting changes either with other students working offline or with one of the “gardeners” of

the UNICEF wiki based in New York, who would organize, copy-edit, and synthesize work on

wiki during the delegates long “offline” periods.

While the MoinMoin wiki was able to help the delegates complete their tasks, it was poorly

14

suited to the model of collaborative writing practiced at the J8. Most importantly, MoinMoin’s

centralized model made contributions difficult as collaborators had infrequent access to the Inter-

net. Problems related to the need for connectedness were aggravated in the face-to-face meeting

when the available time for writing far exceeded the time connected to the Internet.

The result was either inactivity or offline work that led to the possibility of divergence and, as

a result, conflicting changes. There was no easy way to reconcile — or even recognize — these

conflicts. The MoinMoin wiki has no method to merge changes or model them in a way that

takes into account the non-linear nature of development. The lack of methods to help identify

and merge changes led to a lack of offline work. Ultimately, the cost in time and energy of

merging changes outweighed the benefit of working offline.

Similar problems exist in other wikis and in most other collaborative writing tools. Alternative

real-time synchronous communication tools, where collaborators can monitor each other’s work

in real time (e.g., Gobby or Google Docs), would have been even more problematic in the J8 use-

case, both in their increased reliance on synchronous connection and in their inadequate support

for divergence.

An ideal collaborative technology for the J8 would be more friendly to offline and disconnected

work, would facilitate tracking and merging divergent parallel versions of the document, and

would allow for more efficient and more productive collaboration. To do so, it might borrow

their wiki’s low barrier-to-entry, web-centric ad hoc approach to work flow, and history-tracking

functionality and would build on these features to allow cooperation in parallel.

2.2 Wikipedia Stable Versions

Many people, both inside and outside of Wikipedia, have expressed concern with quality assur-

ance in Wikipedia articles. To address this issue, several dozen “article validation proposals” have

been suggested in the Wikipedia community [5]. “Stable versions” is the term for one of the most

popular models that is currently being implemented on the German Wikipedia with several other

Wikipedia language groups watching closely. Stable versions aim to allow Wikipedia editors to

15

vet and approve versions of articles that are then stabilized or frozen so that only site Administra-

tors can modify them. After stabilization, work continues in a copy of the article earmarked for

“development.” In the model, changes are then “synchronized” from the development version to

the stable version every several months. Any emergency changes to a stabilized article are to be

discussed first and then integrated, by hand, by a site Administrator.

The introduction of stable versions has been controversial in Wikipedia. The most recent pro-

posal was rejected in the English Wikipedia but accepted in the German Wikipedia (the second

largest Wikipedia community). While early proposals advocated a purely social system based

on existing locking mechanisms and predictable naming of articles, a new version of the Medi-

awiki software with rudimentary built-in support for stable versions is in development by the

Wikimedia Foundation [77].

While proposals for stable versions of Wikipedia article differ, they each aim to provide a simple

means to create diverged or forked articles; no proposal equates stable versions only with “lock-

ing” or “protecting” an article. In the stable version model, work continues after articles have

been stabilized — it just continues in a separate version of the article. Similarly, no proposal treats

divergence as permanent. In the idealized setting, development versions are improved, periodi-

cally reviewed, deemed stable, and used to replace the old stable version. At that point, a new

development version is created.

Even proponents admit that this model is idealistic. First, no degree of vetting or review will

leave a stable article immune to changes. As a result, fixes and small changes continue in the

“stable” branch in parallel to work in the development version. As each branch develops, the

result is two-way divergence. Since the sharing of changes will include both fixes to the stable

version applied to the development branch, and uncontroversial changes to the development

branch being applied to the stable version, simple difference representation to the branches under

extensive work quickly becomes insufficient.

As the development version and the stable version diverge, the cost of merging changes between

the branches becomes increasingly high since each change must be discussed and made “by hand”

by administrators. Additionally, several editors have asked about what happens when the devel-

opment version clearly deteriorates in quality. The obvious answer, to many Wikipedia editors, is

16

to merge positive contributions in the development branch into the high quality, but out-of-date,

stable version. However, the cost of finding the differences between the documents and merging

them by hand introduces a significant and often prohibitively high cost.

The stable version proposals are, at their essence, a call for parallel versions of articles within

Wikipedia. There is not necessarily a disagreement between editors working on stable and devel-

opment versions — the editors will frequently be the same people. While obeying the criteria for

inclusion of text in a stable article (e.g., uncontroversial corrections of mistakes, addition of im-

portant new information, procedure for major updates of a stable version), the articles are meant

to be developed in parallel.

Calls for stable versions have been stymied, in part, by the raised cost in labor of synchronization

of the the two versions or branches of the stabilized articles and the lack of a tool to present

differences between diverged branches effectively. One editor objected to the proposal on grounds

that it introduces, “more cumbersome stuff to juggle around manually.” Many others echoed

similar sentiments. The lack of a tool to track the relationships between the branches and assist in

the efficient transfer of information between the branched versions creates an important barrier

to a feature with widely recognized value in the community. An ideal tool would provide a means

of representing differences between the two versions and allowing editors and administrators to

easily apply and share changes between articles.

2.3 Wikinews

Wikinews, a wiki-based news website, facilitates collaboratively written news stories. The site

was started in 2004 and is supported by the Wikimedia Foundation, the organization that also

supports Wikipedia. Wikinews exists in 22 languages with a combined total of more than 37,000

articles — roughly one quarter of those in the English language version of the site. Unlike other

Wikimedia wikis, Wikinews foundered early; producing an average of 16 articles each day in

2004, the site’s output has stabilized at 4-6 news articles daily in 2007.

Axel Bruns has compared Wikinews to other collaborative “participatory” news sites like Ohmynews

and Indymedia. He describes these other sites as offering, “multiperspectival coverage of the

17

news.” Bruns concludes that Wikinews’ problem stems at least in part from its strong adherence

to a principle of neutral point of view (NPOV) adopted from the Wikipedia project [16]: a com-

plex concept that aims to ensure that a variety of different perspective are fairly integrated into

an article in an unbiased way [32, 59]. NPOV requirements and guidelines in Wikimedia projects

like Wikinews and Wikipedia serve to frame discussion so that users can work toward the goal of

a single article that incorporates each of their divergent perspectives — a technical requirement for

collaboration in wiki. Divergence is frowned upon and happens in separate articles or separate

wikis.

Many commentators blame the consensus requirement for Wikinews’ difficulties. The Washing-

ton Post attributed Wikinews’ failure in part to the cumbersome peer-review process aimed to

ensure NPOV [79]. Blogger Matthew Yeoman claimed that, “in their zeal for a Neutral Point of

View, Wikinews seem to revise the life out of their stories, reducing lively news coverage to dull

regurgitation of facts” [84]. Alex Bruns commented that, “while the Wikipedia’s NPOV doctrine

is commendable in an encyclopedic context, then, it cannot apply in the same way for Wikinews;

indeed, it may even be counterproductive where it stifles engaged debate on complex issues” [16].

In volunteer news production, more so than encyclopedia article writing, editorializing seems to

play a more central, motivating role.

A real example from Wikinews can illustrate the way in which Wikinews is particularly poorly

served by NPOV and the requirement that groups come to consensus on a single article. Adam,

a new editor on Wikinews, wrote a draft of an article for Wikinews about how CNN had hired

three right-wing commentators and about speculation in the press that this was designed to help

the news network compete with Fox News, which had recently passed CNN in the cable news

ratings in part due to its reputation for right-wing punditry.

Adam’s article was quickly and strongly attacked by several other editors on the site. Worried

with the political subject of the article, one editor said, “this is not really news in its current form

... because I still think its your opinion.” Editors suggested changes to the title, introduction, and

other sections of the article which Adam disagreed with but ultimately incorporated in order to

allow publication on the site. In his creation of two other articles — also on political issues —

Adam ran into similar opposition from other editors. He became disenchanted with Wikinews

18

and ceased contributing.

Both Adam’s motivation and those of the other editors were politically colored. Adam self-

identifies as a leftist and wanted to highlight what he saw as a dangerous shift to the right by

CNN. Several of his article’s most vocal opponents on Wikinews have strongly stated right-

wing positions on their personal websites. Wikinews’ adherence to NPOV is problematic in

general because news — and political news in particular — is, unsurprisingly enough, frequently

politicized.

There are, as Bruns describes it, two major models for collaborative and independent news pro-

duction. Collaborative work toward the production of the single articles, like in Wikinews, or

independent and fully separate production of several articles with the ability to respond and dis-

cuss [16]. Collaboration in parallel describes a third option well suited to a project like Wikinews.

In CIP, collaborators like Adam would write their article as they had before. If other editors

disagreed or wanted to make substantive changes that Adam did not want to incorporate, they

would have the option of making their changes in a separate branch of the article. As the articles

develop and solicit feedback and copy-editing from the community, the two groups would be able

to share those changes that apply to both versions and would be able to diverge where politics

and aesthetics allow it.

Google News currently aggregates news from more than 4,500 English-language news sources.

Major news stories will frequently be the subject of hundreds or thousands of articles visible in

Google News — many of them representing only slight modifications to stories written by several

major news wires. Traditional news reporting agencies diverge on the text of wire articles because

they want to tailor stories to the interests and politics of their audiences. The vast multiplicity

in audiences in contemporary mainstream news publishing is testament to readers’ strong desire

for this type of customization by news sources. While most encyclopedia readers are happy with

a single encyclopedia from a neutral point of view, it seems likely that news readers will be more

reticent. Wikinews’ insistence of single articles over multiperspective news is unable to cater to

the desires of writers like Adam and is poorly suited to producing the type of news that many

news readers want.

19

Using CIP, Wikinews could produce not one a version of an article but many — and could do

collaboratively. Users could choose between articles based on established points of view and

on other readers’ experiences and feedback. The lack of tools and technology to facilitate the

type of collaboration in parallel in wikis necessary to bring this about means that Adam, and

others writers interested in collaborative and wiki-like news production, simply don’t write news

collaboratively at all. It means that readers are left with their products.

20

Chapter 3

Theory

3.1 Computer Supported Cooperative Work

Over the last two and a half decades, the focus of the research done in the academic field of

computer supported cooperative work (CSCW), and in particular the sub-field of computer sup-

ported collaborative writing (CSCWr), have studied the technical support of collaborative textual

production [65, 12]. An interdisciplinary research area involving the works of cognitive psychol-

ogists, organizational sociologists, and computer scientists, CSCW and CSCWr are methodolog-

ically most closely aligned with the human computer interaction sub-field of computer science,

and most theorization is insantiated and tested in working system prototypes. CSCW theorists

frequently categorize collaborative writing into four groups (see Figure 3-1) based on the modes

of synchronicity and proximity of the work. By focusing instead on these theoretical goals, most

collaborative writing systems can be placed into one of two alternative categories: those that seek

to increase awareness and those that seek to support workflow [48, 66].

The first of these categories pertains to “awareness,” an overwhelmingly broad term in CSCW

that generally refers to, “an understanding of the activities of others, which provide a context for

[ones] own activity” [22]. The term serves as, “a placeholder for [the] elusive practices of taking

heed of what is going on” [63]. The theory behind awareness support is that if collaborators

21

Figure 3-1: Breakdown of collaborative writing work modes (Adapted from Lowry et al. [48] and
from Ellis, Gibbs, and Rein [24])

know what each other are doing, they are better able to coordinate and, as a result, can work

together more effectively.

Classic examples of support for awareness in CSCW systems are Xerox PARC’s Cognoter and

Media Spaces projects which aimed to support collaboration by providing rich information (e.g.,

video, audio, text, graphics) to participants [68, 14]. Other efforts, especially those based on col-

laborative writing, have supported awareness by increasing the visibility of previous work. The

Read and Edit Wear software — which showed areas of frequent editing through “wear marks”

in a toolbar — and Color Emacs — which exposed document history through the use of color —

are each classic examples of tools that support collaborative writing by exposing “history” of a

collaborative document [36, 46].

A second body of work has aimed to support collaborative writing by providing support of

time- and role-based workflow. In a time-based workflow system, a document or document part

is “locked” while one collaborator edits it. Role-based workflow is focused on constraining collab-

orators’ interactions by the nature of their contributions. Workflow systems are often modeled

after collaboration in the traditional publishing industry: collaborators might be authors, edi-

tors, proofreaders, or others — all roles supported in different CSCWr theoretical frameworks

22

and tools [48].1 Together, workflow-based models play a central role in CSCW and CSCWr

technology design [57].

The Quilt system from the University of Washington is an example of a role-based workflow

system for CSCWr. In Quilt, users adopt roles which limit their ability to interact with the doc-

ument (e.g., a reviewer might only be allowed to annotate the document). Another early CSCWr

system, MILO, replaced Quilt’s role-based system with one based more on a highly structured

document and a flexible time-based model [38]. In both systems, collaboration is supported by

using workflow to make the nature and timing of changes more predictable so that users can plan

their work and interactions with collaborators.2

It is important to note that, in the technological support of both awareness and workflow, CSCW

and CSCWr systems are designed to support the production of a single product in the context

of shared goals. While these systems differ widely, this assumed goal is consistent throughout.

Dillenbourg and Baker go so far as to define collaboration itself as, “a coordinated, synchronous

activity that is the result of a continued attempt to construct and maintain a shared conception

of a problem” [19]. Similarly, Lowry et al. define collaborative writing as, “an iterative and

social process that involves a team focused on a common objective that negotiates, coordinates,

and communicates during the creation of a common document” (emphasis added) [48]. The focus

on supporting singular goals and singular documents has provided a point of unity in CSCWr.

However, it has made the field slow to recognize an important model of collaborative work

where collaboration may result in multiple non-canonical documents or documents that support

multiple objectives.3

1Lowry et al. give an especially in-depth analysis and categorization of different types of role based workflow in
their Building a Taxonomy and Nomenclature of Collaborative Writing to Improve Interdisciplinary Research and Practice
[48].

2Lowry et al. also go into depth on the nature of planning and different methods of planning that different CSCWr
methods attempt to support [48].

3My own work, including the work described in this thesis, has encountered resistance in the CSCW community
due to the fact that it deviates from this core quality. One prominent researcher told me that, while potential useful,
CIP was “not collaboration” and an inappropriate site for research in the community.

23

3.2 Revision Control for Software and Text

Since many of those building CSCW tools are programmers, it is unsurprising that a large por-

tion of CSCW experiments and tools are designed to support the process of writing software.

One key class of tools built to support collaborative work on software is source-control manage-

ment (SCM).4 SCM automates the process of storing and retrieving different versions of a piece

of software — often using storage space- and transfer-efficient differential-storage systems. The

first widely used SCM was the Revision Control System (RCS) written by Walter F. Tichy and

published in 1982 [69]. Variants of Tichy’s system are still widely used today and most modern

SCM systems incorporate ideas from RCS. However, more important than RCS’s technology was

the fact that the system served to lower the barrier to collaborative software development. By

being able to “revert” to any previous version of a piece of software, differences in opinion and

conflicts among software developers were not reduced, but they became trivial to recover from.

Particularly in the case of geographically distributed collaboration, RCS and its successors played

an essential role by documenting software’s “history” and providing a way for collaborators to

monitor changes made by others.

SCM ultimately played an important technical role in facilitating the large-scale collaboration

in FOSS and the creation of the GNU/Linux operating system, the Apache web server, and

many other important software projects [26, 27]. RCS, itself free software, was incorporated into

Dick Grune’s Concurrent Versions System (CVS) which added many features and enjoyed almost

universal use in FOSS communities. In particular, CVS added “lockless” operation to RCS: the

ability to work on a file or project without setting it off limits for other collaborators. Lockless

operation, in part facilitated by methods for handling merging and the resolution of inevitable

conflicts, allowed for unprecedented asynchronous and entirely disconnected collaboration on

software.

The effects of these features were profound. Collaborators were frequently able to work pro-

ductively while disconnected, out of sync, and with little inter-collaborator communication. In

4SCM is frequently referred to using a variety of names. These include “source control,” “revision control,” and
“version control.” I use SCM in large part to emphasize the design of these tools for software source code and to
distinguish them from tools which try to track or control revisions or versions of other types of creative works.

24

Figure 3-2: Visualization of a simple branch

this way, SCM helped pave the way for the success of FOSS projects, many of which are widely

distributed, Internet-based, and built largely from volunteer contributions. Lockless SCM —

and CVS in particular — has been cited by technologist David A. Wheeler as one of the most

important software innovations of all time [82].

Noting superficial similarities between source code and documents — both are, from a purely

technical perspective, text — ideas and technologies from SCM have been applied to the pro-

duction of documentation and writing as early as Theodore Nelson’s Xanadu [53, 52]. In fact,

explicit attempts to introduce traditional SCM technologies to collaborative writing have been

a major thread in both the CSCWr research and practitioner communities [20, 21, 40]. Wikis,

perhaps the most recognized example, have incorporated SCM features as part of a sometimes

explicit attempt to support FOSS-style collaboration in writing [17, 80, 41].

3.3 Distributed Source Control Management

In simple SCM environments, revisions are modeled as a serial list of changes. In reality, work

is asynchronous, workflow is unenforced, and collaboration happens in parallel. To account for

this, early SCM systems, including RCS, incorporated a rudimentary concept of “branching”

[69]. Branching (or forking) refers to bifurcation in the history of a document often represented

as shown in Figure 3-2. The term is designed to evoke a simple “trunk” and “branch” mode of

work.

In early SCM systems, including RCS, branches were a numbering scheme that ensured “forked”

25

Figure 3-3: Visualization of simple branch and the merge process back into the trunk

versions of a file were marked so that users could determine when a branch had diverged. With

time and with the help of rudimentary merge functionality in lockless systems like CVS, col-

laborative development began to make increasingly sophisticated use of branches to coordinate

feature development, invasive or disruptive changes, and to coordinate releases [26, 27]. While

the mode of production and the storage of revisions remained centralized, different branches

existed within the centralized repository to allow disruptive work to move forward in parallel.

When disruptive changes were finished, work was merged back into the trunk as shown in Fig-

ure 3-3. While CVS and other early SCM systems provided support for tracking branches, they

rarely provided more than basic support for merging. The result was infrequent use of branching

functionality and short-lived branches.

A new class of distributed source control management (DSCM) tools were created to facilitate

more frequent and extensive use of branches. By increasing use of branches, the authors of

DSCM tools aimed to support increasingly distributed, ad hoc, and disconnected collaborative

software development. Invented only several years ago, these tools, and the ideas behind them,

have already had rapid uptake in software development communities and in FOSS communities

in particular. Examples of DSCM tools include BitKeeper, DARCS, Git, Bazaar, GNU Arch,

Monotone, Codeville, Mercurial and SVK.

DSCM is distinguished from traditional SCM in several ways:

• There is no “trunk” or canonical version. Instead, every repository is a first-class branch

and contains a full copy of relevant history;

26

• Because there is no central repository, new peers can freely participate. These peers do not

need write permission to any existing repository; they can make changes and commits into

their own branch;

• Consequently, merging plays a central role in the day-to-day operation of the system; ordi-

nary patch exchanges and updates are merges;

• Due to the increase emphasis on merging and the difficulties of conflict resolution, tools

put increased effort on conflict reduction. Frequently, this involves improved history ac-

counting and modeling [10].5

While the technical advances behind many DSCM systems are impressive, their significance lies

in the fact that they allow for new, powerful forms of collaboration. These fall into two major

categories:

1. The ability to work disconnected from each other and to sync with each other, in whole

or in part, in an arbitrary and ad-hoc fashion;

2. Support for differences or divergence between two branches that can be maintained over

time [35];

The most famous user of DSCM (and the source of one of the most widely used tools) is the

Linux kernel project. Linus Torvalds, the primary coordinator of development on the Linux

kernel has authored Git, one of the most widely used DSCM tools, and has described DSCM

as “fundamentally [making] us (and me in particular) change how we do things. That ranges

from the fine-grained change set tracking to just how I ended up trusting sub-maintainers with

much bigger things, and not having to work on a patch-by-patch basis any more” [70]. David A.

Wheeler describes how:

Decentralized development has its strengths, particularly in allowing different people

to try different approaches (e.g., independent branches and forks) independently and

5A in-depth description of the process of conflict resolution is included in both Chapters 5 and 6.

27

then bringing them together later. This ability to scale and support “survival of

the fittest” is what makes decentralized development so important for Linux kernel

maintenance [81].

FOSS projects have grown increasingly dependent on capabilities of DSCM to engage in long-

term divergence of a type that was previously impossible. This type of ad hoc parallel divergence

has, to date, no obvious corollaries in writing.

3.4 Cooperation in Parallel

A new generation of FOSS projects, including the Linux Kernel, have employed DSCM in a set of

promising new software development methodologies. One of these models has played a central

role in the development of the Ubuntu GNU/Linux distribution. By diverging from the Debian

project, an extremely large and complex code base, Ubuntu has been able to quickly create a

successful operating system with a large install-base with a team of less than two dozen program-

mers. Using DSCM through a process described in Section 5.1, Ubuntu developers continue to

share code with the Debian project in their parallel branches over time through published list of

changes to packages and patches in Debian’s bug tracking system [35]. While diverging or “fork-

ing,” is frequently easy, ad hoc, bi-directional collaboration in areas of agreement within these

diverged projects has historically proved difficult and labor intensive. Ubuntu’s use of DSCM is

noteworthy because it allowed a small team of developers to accomplish what, in most examples

in the past, would have introduced a prohibitively high cost in time and effort.

Parallel development, as practiced by a series of GNU/Linux distributions including Ubuntu,

constitutes an important new development model and a new mode of computer-supported coop-

erative work. This model, which I call cooperation in parallel (CIP) refers to ad hoc cooperative

work among parties working toward different but partially overlapping goals. Navigating a con-

stant tension between collaboration on overlapping goals and the need to protect and preserve

divergence, CIP is grounded on collaborators’ attempts to maximize both cooperation in areas of

overlap and divergence where and when it is useful. When supported appropriately, CIP benefits

28

all participants precisely because it allows for differences in their individual needs andlabor while

summing those that are shared.

CIP differs from other forms of cooperation in that it does not rely on workflow or a shared

conception of a single end-goal. Instead, CIP is entirely ad hoc and is always in the interest of the

individual collaborators working toward their individual goals in an ecosystem of others pursuing

related and overlapping goals. I hypothesize that the example of free software communities — and

DSCM in particular — demonstrates that resonant divergence in CIP can be facilitated through

technologies built around five design principles:

1. Supporting parallel work among individuals or groups interspersed by merge sessions. Dur-

ing merges, users are presented with work from collaborators and are asked to evaluate and

integrate relevant work;

2. Emphasizing transparency over explicit forms of communication, modularity and tradi-

tional forms of awareness [11];

3. Effectively displaying and summarizing changes between documents in ways that take into

account previous decisions to diverge;

4. Representing, reflecting, and resolving conflicts upon merges;

5. Allowing collaborators to quickly and easily decide when and who to work with. Toward

this end, collaborators should easily be able to determine who appropriate collaborators

are;

The first criteria — support for parallel work interspersed by merge sessions — describes the

overall model for CIP. It is the relationships of work in branches, but with points of at least

partial convergence, that forms the most superficial description of CIP. However, this criteria

alone might describe much traditional work in branches as well. The second criteria — emphasis

of transparency — ensures the ad hoc nature of collaboration which serves to distinguish CIP from

other types of cooperation through branches. Cooperative work in branches can be supported

through workflow, modularity, communication, and awareness — as is the case in many of the

29

CSCW projects described in Section 3.1. Transparency, in this case, means collaborators are

given free reign to diverge without consideration for or communication with other collaborators.

While they are able to see, borrow, or share at will, they are never forced to work in a particular

way or be forced to track the contributions of a potential collaborator.

The third and fourth criteria — effective display of changes and support for the representation and

resolution of conflicts — are necessitated by the first and second criteria taken together. If work

is going to be done in branches and if that work will be largely uncoordinated, the branches

will diverge. Any effective CIP system, then, must put a strong emphasis on communicating

the nature of this divergence to users when and where desired. Similarly, while many other CIP

systems use workflow and communication to avoid conflicts in the first place, CIP’s ad hoc nature

ensures that they are always possible and may, in some cases, be extensive. As a result, CIP tools

must be able to effectively and appropriately represent conflicts to users and provide methods to

resolve them.

The nature of the cooperation implied in the first four criteria aims to reduce the cost in labor

and cognitive load of ad hoc divergence of branches but it does not eliminate costs altogether.

As branches diverge, the cost of collaboration may become prohibitively high for some collabo-

rators in some contexts. Similarly, in cases where previously unrelated branches converge, new

collaborative relationships may be initiated. The fifth criteria states that this process, in addition

to the sharing of changes described in criteria two, should be given special attention in CIP.

There are several tools used to support CIP in software source code. Each of these criteria is

satisfied by each of these tools being employed by communities working effectively in parallel.

Taken together, these criteria can effective divide those working on traditional branches built

around canonical “trunks” from those who are truly working in parallel. As a result, I believe

that tools trying to support CIP in other areas can be evaluated in their ability to satisfy these

principles.

30

3.5 CIP for Writing

While several tools and algorithms exist for computing, minimizing, and representing differences

and conflicts, there have been few attempts to do so in ways that are designed for writers. While

several tools exist for representing and resolving three-way conflicts, they are developed for and

integrated into programming environments. These tools represent changes on a line-by-line basis

which, while appropriate to source code, is ill-suited for writing where the most useful units

are words, sentences, paragraphs and sections. More importantly, they rely on notation and

interfaces that are prohibitively complex for non-programmers. Even using these tools, conflict

resolution in three-way merge environments is famously difficult for technical users.

CIP has been largely limited to software development communities. To date, there have been no

attempts to support “parallel development” for writing or literary works or to apply the tools and

principles of DSCM toward the facilitation of collaborative writing. A writing-specific interface

to the branch-management functionality of DSCM, with special attention paid to conflict resolu-

tion in an asynchronous, distributed, environment, will allow collaborative writing in ways and

among groups where it was previously impossible.

When used non-collaboratively, such a system might make the maintenance of partially diverging

and partially overlapping copies of a resume, curriculum vitæ, or grant proposal easier. In the

context of collaborative projects, like wikis, it will decrease the cost, in time and effort, of staying

in sync with diverging versions of articles.

It might, for example, provide an alternative to the often-contentious “Neutral Point of View” in

Wikipedia and Wikinews [75, 59] and allow for collaboration among individuals or groups with

different points of view in areas of potential overlap (e.g., in Larry Sangers recently announced

Citizendium project6). In each of these cases, CIP will allow writers to diverge where necessary

while collaborating where possible. I believe that this has not been attempted due in part to a lack

of methods and tools that allow users to stay up-to-date with what other diverged collaborators

have done provide text-appropriate methods for conflict resolution.

6More information on Citizendium is available on the project website at: http://citizendium.org/ and http:

//citizendium.org/essay.html.

31

32

Chapter 4

Writing and Writing Code

Source code is superficially very similar to literature. Both are constituted by letters, numbers,

and punctuation. Both are written in “languages” and by “authors.” These technical similarities

supports an analogy that in turn supports the design of TextNet: software to support a mode of

writing inspired by software development methods and using similar tools.

When pursued, the analogy is deeper, more nuanced, and less straight-forward: both software and

documents are expressions of ideas and reflections of their authors’ complex social relationships

— relationships that differ between and within each group. For example, CIP is possible in FOSS

communities in part because there are a set of community norms that facilitate and encourage

this type of collaboration. FOSS’s large community and strong voluntary nature have led to a

set of design principles for FOSS technology like SCM and DSCM. FOSS is fertile group for CIP

because its communities play out a tenuous balance between the agreement necessary for broad

collaboration and the constant possibility of divergence.

In this chapter, I compare code and text while focusing on the communities that create them

and the way that these differences frame and inform collaborative work. I attempt to harness

an understanding of the social arrangements around CIP for code to draw analogies to CIP for

writing and to establish a set of non-technical criteria for its support.

The fundamental difference between writing code and writing text, I will show, is one of com-

33

munity — of producers and of audiences. Supporting CIP for writing is about supporting the

communities and processes for the production of documents and about understanding the com-

munities of collaborators and readers that motivate and support the creation of works. By prob-

lematizing our conceptions of programming practice, by learning from the examples of program-

mers, by analogizing programmers and authors, and by understanding both why and how texts

are produced collaboratively, we can begin to imagine one more component of what CIP might

look like.

4.1 Coded Communication

There is a pervasive argument, primarily held by non-programmers, that software is an entirely

functional, non-creative work. Instead, the argument goes, it is merely a tool whose design re-

flects and is evaluated in its ability to fulfill its function — comparable to the design of a circuit

or a hammer. While widespread, this position presents both a false dichotomy of function and

expression and an incomplete account of the expressiveness of code. It is held by very few expe-

rienced programmers.

In a series of court cases, lawmakers and the government defended these positions against a

counter-discourse by programmer-activists attempting to establish source code as a legal — and

thus constitutionally protected — form of expression. In the landmark Bernstein v. US Depart-

ment of State case, computer programmer Daniel J. Bernstein sued the government over laws

barring export of cryptographic source code on the basis that they constituted a prior restraint

on free expression [1, 2, 3]. In arguing against this position, the U.S. government offered a strong

version of the argument that source code is fundamentally distinct from writing by claiming

that, “a description of software in English informs the intellect but source code actually allows

someone to encrypt data” [1]. The government argued that code was without aesthetic or com-

municative properties and compared is to a circuit diagram, an equation, a bridge, and a hammer

as a way of highlighting the way that these are distinct from protected forms of expression like

many forms writing.

Ultimately, the government’s arguments failed to convince the court. In its decision, the judges

34

sided with Bernstein offering an eloquent description of source code comparing it to art and to

writing:

The music inscribed in code on the roll of a player piano is no less protected for

being wholly functional. Like source code converted to object code, it “communi-

cates” to and directs the instrument itself, rather than the musician, to produce the

music. That does not mean it is not speech. Like music and mathematical equations,

computer language is just that, language, and it communicates information either to

a computer or to those who can read it [1].

With its analogy to piano rolls, the court explained that all communication is, to some degree,

coded and that many types of speech — and writing in particular — is functional in nature. In the

view of the court, being largely functional did not necessary distinguish code from other types

of creative works.

Source code, like law or musical annotation, is a particular, formal description that makes saying

certain types of things to certain groups of people easier. With its emphasis on procedural in-

tegrity and its attempt to reduce the possibility of ambiguity, it is much easier to build machine

code from C source than from unconstrained English prose — although programmers try to do

the latter as well. Comparisons between different formalities — be it a comparison between US

Legal English and Java or Java and Python — result in the description of formalities that make it

easier to say certain things, to certain people, and to endow language with certain effects.

4.2 Code and Aesthetics

In Bernstein, the Ninth Circuit court found that software was protected because it was as commu-

nicative as other forms of protected expression and that it was not fundamentally different from

other forms of writing and expression. In his PhD dissertation at the English Department at the

University of Pennsylvania, Maurice Black examined and exposed the literary nature of source

code and described much deeper similarities between the two modes of creative production by

focusing on the role to which source code is an aesthetic and literary artifact [13].

35

Black’s argument is most strongly supported by testimony of programmers through statements

that equate programming with literary pursuits like poetry. Black’s analysis spans the full history

of computer science beginning with Lady Ada Lovelace and ending with the iconic computer sci-

entist Donald Knuth. Black’s examples are most explicit with Knuth who describes programming

as, “as an aesthetic experience much like composing poetry or music, ”and as, “the process of cre-

ating works of literature, which are meant to be read” [13]. Black demonstrates that Knuth’s

description is not mere analogy. He argues that Knuth’s goal is to correct the type of mistake

made by the government in Bernstein — focused on the way that software is run by comput-

ers, the government lost site of the fact that source code is written by and for humans. Black

argues that through this process and through others like it, code becomes an essentially literary

work. As Black shows through a treatment of John Lyons’ famous pedagogical annotations of

the UNIX source code, software offers the potential for close reading and as much aesthetic bias

as in more recognizably literary texts.

In a forward to the computer science book A = B, Donald Knuth writes, “science is what we

understand well enough to explain to a computer. Art is everything else we do” [56]. Proving

this point, a quick survey reveals the vast multiplicity of ways to “explain” even a simple pro-

cess to a computer. Wikipedia lists 535 “notable” programming languages and an additional 231

variants of BASIC [4, 8]. The esoteric programming language wiki lists another 360 “esoteric”

languages — most of them designed for fun or to prove a point [25, 49]. A project trying to collect

implementations of programs that can output the full lyrics to 99 Bottles of Beer has collected im-

plementations in more than 1,000 different languages [62]. The computer acts indistinguishably

in each of these 1,000 examples — it is the experience for the human programmer or reader that

differs and it is on the level of aesthetics that many of these languages, and of the programming

communities and cultures that have created and sustained them, diverges.

In his article on Software as Art, Gregory Bond points out that that programmers evaluate not

only source code but software products themselves using highly aesthetic criteria that include

“correctness, maintainability, readability, lucidity, grace of interaction with users, and efficiency

as properties that inspire pleasure, or pain, in [the software’s] readers” [15]. David Hillel Gelern-

ter describes the role of aesthetics in depth in his book Machine Beauty: Elegance and the Heart

36

of Computing where he demonstrates how it was the, “lust for beauty and elegance [that] under-

pinned the most important discoveries in computational history” [29].

Just as aesthetic sense informs language, idiom and figures of speech for both readers and writers

of poetry or novels, programmers part ways with each other and form communities around

languages, coding standards, and programming style — often based on criteria that can only be

described as aesthetic. These types of divisions lead to and differentiate separate programming

communities — and literary communities as well.

4.3 The Particulars of Programming

In Code and other Laws of Cyberspace, Lawrence Lessig argues that computer code and laws — i.e.,

legal codes — are both best considered as sets of “proposed rules” [43]. Lessig’s book explores

an extended analogy hinted at by the Ninth Circuit court in Bernstein: code is like other types

of writing in that both are subsets of a class of creative, expressive works designed to concisely

and unambiguously convey a set of rules in a specialized language written for a small community

educated to understand them. Furthermore, “speech acts” play an important role in both law

and code and, when supported with proper equipment — a government or a computer — can

effect real change [64]. As a frequently cited area of convergence between code and writing, the

practice of writing law provides a rich space for the examination of important distinguishing

characteristics of writing and programming communities.

James Grimmelmann, a programmer and professor of law, has ruminated on the differences

between law and code at several points in his career. While Grimmelmann agrees that law and

code are deeply similar, he explains that while in software nuances are complex and counter-

intuitive, their encoding, in the context of a particular compiler or computer is fundamentally

predictable. This differs from law where, he explains, “meanings are often negotiable and the

most formally correct reasoning can be undone if the result would be unjust or inconsistent with

a statutory scheme as a whole” [31].

Jeff Lipshaw, another law professor, references Wittgenstein to try and take Grimmelmann’s ar-

gument one step further by arguing that programming is missing perlocutionary acts, “family

37

resemblances,” inductive rule-following, and that while, “human beings who design the program

may disagree as to what the program was intended to accomplish, the program itself can only

serve one master” [47]. Lipshaw overstates his case about software’s self-contained nature; in

fact, programs frequently are designed to operate differently in different contexts. He also over-

states the lack of opportunistic design in computer software; “polyglots” provide an important

counter-example through their design to run, either identically or with differences, in different

programming languages [9]. But, Lipshaw’s core argument — echoing Grimmelmann’s — exposes

an important and real difference.

The source of the similarity between programming and law, when compared to other forms of

writing, is at the core of the most important difference between the two. Computer program-

ming, like formal logic, is designed to be internally consistent and testable by effectively identical

and identically programmed computers throughout a programming community. The use of com-

puterized compilers and interpreters “codifies” programming languages and other software design

decisions in a way and to a degree that is unique to works that are written to be parsed, validated,

or executed by a computer. Ultimately, law privileges inherently personal judgment calls about

fairness and justice over deductive reason — a decision a compiler itself cannot make. The result is

a degree of unstated and accepted ambiguity in most forms of writing that does not — and cannot

— exist for programmers at the point of compilation. This fact, while not always as significant as

the government argues in Bernstien, lies at the heart of communities’ ability to collaborate and

to diverge. It places a limit on at least one class of divergence in programming communities and

in their products.

The borders between different programming languages — and even different versions of one pro-

gramming language — are severe at the point when a program is run. Divergence, including the

creation of programming language dialects, is still possible in computer languages and happens

frequently. However, even minimal divergence on the language level can result in complete in-

compatibility at the point of compilation and, as a result, on the level of textual collaboration.

Even in situations where communities continue to work together, the result of this type of diver-

gence for computer languages is different texts and different programs.

The fact that certain types of differences result in barriers to collaboration shapes the nature and

38

degree of divergence. The desire to sustain textual collaboration through the use of libraries and

code sharing and through access to large programming communities frames collaborative work

on software. The resulting model supports a type of common-ground that makes collaboration

possible. Paradoxically, it also opens the door to collaboration among groups who have reason

to diverge.

4.4 Divergence and Collaboration

An understanding of the social nature of communities provides insight into how communities are

divided and on the terms that make cooperation possible. CIP is the description a community of

communities made of distinct groups — a network of networks of collaborators. As established

in Chapter 3, CIP requires:

• A divergent conception of the ends — users must disagree on the end product;1

• A common process of textual overlap and steps toward the divergent ends;

• An ability and desire to work as part of an ecosystem or group of groups.

An analysis of the way that these qualities frame the social nature of CIP in software helps

describe qualities of the social arrangements that may be important for CIP writing.

4.4.1 Divergent Goals

While CIP has played an important role in FOSS communities, it is inappropriate for most

software development projects. Fundamentally, CIP is only appropriate in situations where users

have different goals. Software development communities have shown that CIP is less useful and

less likely where users are in complete agreement about their immediate ends.

1In a sense, disagreement on ends may be more common in CSCW and CSCWr than the disciplines and their
technologies might imply. However, because of the way that CSCW and CSCWr frames collaboration, groups are
forced to compromise on shared ideals.

39

One frequent source of shared goals is the fact that many programmers are paid to write together.

When a firm builds a piece of software, a executive or project manager dictates feature goals

to developers. In these situations, there is no need to diverge because programmers are not

empowered to choose direction for the project or to decide to work separately in ways that might

contradict the vision of the manager and that might lead to duplication of work. Common in

firm-managed software development but also common in FOSS communities, the use of style

guidelines (e.g.,Mats Henricson’s C++ Rules and Recommendations or the GNU style guidelines

[33, 28]) provide a way of standardizing more aesthetic qualities of software development. In

contrast, CIP has flourished in FOSS communities where a majority of work is voluntary [42].

Writers will face a similar situation in CIP. While collaborative writing is widespread — by some

estimates up to 70% of writing is done collaboratively — the vast majority of this happens in firms

[65]. CIP will be more successful in communities where participants are free, even encouraged,

to pursue their own ends. This seems less likely in established collaborative writing genres like a

corporate annual report. While hugely collaborative, legal requirements, efficiency, and tradition

dictate that there can only be one version of these types of documents.

As in software, CIP in writing needs to be driven a desire or need to diverge. CIP may play

an essential role for a series of related but individually targeted fund raising pitches or grant

proposals in a non-profit organization or descriptions or manuals for a variety of related but

slightly differing products. In each of these examples, there is a strong desire to produce related

but separate, tailored documents that would encourage users to diverge.

4.4.2 Common Process

Of course, CIP must balance divergence in ends with a shared vision of means. For CIP in

software, this shared set of steps must involve shared code; for writing this must involved shared

text. As a result, CIP for writing is impossible in areas where the goal and the means have diverged

significantly. In programming this blocks collaboration between work in different languages.

While ideas may be shared in these examples, no code can be. Similarly, use of a particular set

of libraries or frameworks within a program can provide barriers to collaboration with similar

40

projects that made different choices.

In Chapter 3, I described the way that CIP has played an important role in the creation of

new GNU/Linux distributions. One widely cited example of such a collaboration was between

the Ubuntu and Linspire projects [74]. However, cooperation was only possible between these

groups because each project is based on Debian. Ian Murdock’s Debian Core Consortium (DCC)

aimed to facilitate CIP between a host of different distribution but only because of the code

the distributions held in common [73]. While other distributions based on Red Hat, Slackware,

or SuSE might have liked to collaborate in the DCC, the lack of a shared set of steps toward

their individually distinct goals — i.e., a shared basis in code — rendered cooperation in parallel

impossible.

As I argued in To Fork or Not To Fork, CIP has played a larger role in divergence of GNU/Linux

distribution in FOSS communities than in the production of other types of software [35]. This

desire to diverge and to work in parallel, rather than to build from scratch, is due in part to

the central role that operating systems play in computer software. It is also due to the cost of

reproducing the work of distributions which frequently contain the work of many thousands of

of collaborators [35, 30]. For most people who want to create a new distribution, the immensely

and usually prohibitively high cost of creating a distribution from scratch makes divergence a

more attractive option.

Similarly, CIP for literary works will require not only the presence of shared goals but a strong

need for shared text in the process. In much fiction, for example, borrowing is common but

primarily happens on the level of themes, plot devices, or ideas; CIP will be of little use in

these cases. The process of updating or building reference works, position statements, textbooks,

curricula, and documentation provides good examples of literary works where there is a strong

advantage to authors who are able to build off of previous work and where reproducing previous

work is discouragingly high.

41

4.4.3 Ability to Diverge

Finally, CIP requires that users have the ability to diverge. Barriers to divergence come in the form

of technical barriers, legal barriers, and social barriers. While DSCM has successfully addressed

some of the technical barriers to divergence for code, social and legal barriers remain. Many

programmers seem to be naturally hesitant to collaborate or borrow even at the cost of high

reproduction of labor — a situation sometimes referred to as “not invented here” (NIH) and

jokingly described as a syndrome. NIH syndrome is documented in a variety of situations and

describe a complex desire for recognition and control over software that results in unnecessary

reimplementation of available functionality. However, NIH is merely one example of a series of

social types of hostility toward knowledge sharing and collaboration within organizations that

might otherwise be working together [37].

Legal barriers act as another major barrier to CIP. Before any form of cooperation can take place,

divergers must have legal permission to modify or incorporate their collaborators’ work. Direct

collaboration often simplifies situations around permission-asking and copyright: parties collab-

orating traditionally make explicit agreements to work together and, through the use of contracts

and copyright assignments, can resolve legal ambiguity about control over copyright ownership.

This reasonably burdensome process may appear less valuable in CIP where collaboration, and

its benefits, are less direct. CIP in many free software communities is only possible because of

strictly enforced definitions of freedom at the heart of FOSS including the Free Software Defini-

tion and the Open Source Definition that ensure that everyone with a copy of the software has

the ability to create derivative versions [67, 55]. These definitions require copyright licenses that

explicitly permit unrestricted copying, modification, and collaboration on software. As patents

have become an increasing threat to software, software licenses have been rewritten to provide

methods for addressing these legal barriers to sharing and collaboration [67].

The social and legal barriers to divergence for writers of literature is more formidable than the

barriers for programmers. Historically, free software was an attempt by Richard Stallman to re-

claim or reinstitute a model of collaborative software production he had enjoyed in the 1960s and

1970s [83]. With hundreds of years of copyright law and widely held conceptions of authorship

42

that privilege a Romantic conception of authorship [34], there are immense barriers to analogous

types of literary collaboration. Divergence is simply not a choice for most writers.

CIP will be more likely in communities with established collaborative work where these social

and legal barriers have been addressed or in new communities with different social conceptions

of authorship and different copyright norms. The Definition of Free Cultural Works [51] and

Creative Commons argue for licenses appropriate to literary production that explicitly allow

for divergence. Wikipedia and other wiki-based projects offer examples of rapidly expanding

communities with social norms that may be supportive of CIP and that have embraced a licensing

model that removes legal barriers to divergence.

4.5 Synthesis

Not all code is written in parallel. Not all code is even written in processes that are particularly

collaborative or conducive to cooperative work. The idea that all writing would benefit from

CIP is not one that I advance here. While CIP has improved FOSS communities’ ability to

maintain divergence, its most important role has been in promoting new types of projects that

were impossible without CIP. It seems reasonable to assume that CIP for non-software will follow

a similar path. The question, therefore, should not be, “can CIP produce a great novel?” but

rather, “what current genres could be enhanced by CIP?” and “what new literary genres will CIP

produce?”

Writing and coding communities are too large and diverse to make meaningful broad statements

about either or analogies between the entirety of both. One can, however, establish that writing

and code are both defined — if not always defined similarly — through their constituent com-

munities. It is these communities and their norms, laws, and technologies that provide impetus,

facility, and constraints on cooperative work. It is through these particularly structured commu-

nities of practice in free software that CIP is facilitated. It will be through analogous structures

that an analogous form of CIP for literature will be supported.

In a sense, writing provides space that is at least as fertile as programming for CIP. In that goals

in writing are, if anything, less further aligned than in programming, the desire to diverge, for a

43

variety of reasons, is a strong one. On the other hand, any collaborative writing process must

address a long history of approaches to writing that are frequently at odds with cooperative work.

While CIP in code has not always resulted in a more efficient ways of building software, it has

empowered people to create software of types, in ways, and in situations where it would not have

been possible before. FOSS has not, for example, revolutionized the oldest and most established

areas of software development — databases, compilers, and customer relation management sys-

tems which are usually built through well-established, highly centralized processes. Debian has

spawned more than 200 GNU/Linux operating systems focused on non-profits, physicians, den-

tists, and Christians; none are demonstrably better than any of the others. They exist to serve the

needs of small groups of users and are built by even smaller teams, usually 1–2 people — working

with others in parallel . Without CIP, the vast majority of these operating systems would never

have existed.

CIP for writing will lead to a new writing methodology that will lead to new types of communi-

ties and a new set of writing practices. The result will be texts that were not possible before and

are only possible through CIP and facilitated by new CIP technologies.

44

Chapter 5

Related Technologies

There are hundreds of relevant collaborative writing tools that over the past several decades have

helped inform and direct my work. In the interest of space, I will briefly discuss the four most

important classes of collaborative work tools and discuss a representative example of each class:

1. Distributed source control management (SCM) tools represented by Bazaar;

2. Source code merge tools and merge modes represent by the GNU Emacs programming

editor’s EDiff Merge Mode;

3. Wikis represented by Mediawiki;

4. Word-processor change tracking represented by Microsoft Word;

Each example has been selected because it is representative of class of tools and I have tried to

limit my analysis to traits that exist through the class. In my discussion, I will attempt to focus

on the tools’ abilities to support the five enumerated principles of CIP as laid out in Section 3.4.

5.1 Distributed Source Control Management (Bazaar)

In Section 3.3, I discussed DSCM technologies as an example of CIP for software development.

With that introduction, DSCM tools seem like a natural place to begin a process of evaluating

45

Figure 5-1: Visualization of Debian and Ubuntu’s parallel development relationship (Adapted
from Scott James Remnant)

technologies for their ability to support CIP for writing. For this analysis, I will focus on the

Bazaar DSCM system.

Bazaar is a DSCM written by Canonical Limited to facilitate more effective development of the

Ubuntu GNU/Linux distribution in parallel with the Debian GNU/Linux project. A model of

the Ubuntu release cycle and its relationship to Debian is shown in Figure 5-1. As can be seen in

the figure, Ubuntu development began with a pristine branch of Debian’s “unstable” distribution.

Ubuntu then proceeded to create a series of modifications to Unstable. This set of differences

is carried over to new pristine copies of Debian at the beginning of each new Ubuntu release

cycle. In this way, the Ubuntu development model is highly dependent on merging bug fixes,

new features and user interface improvements made to Ubuntu into new versions of software in

Debian. Ubuntu releases once every six months and is supported by a team of under 25 paid

developers. As a result, the model is highly reliant on DSCM as a means of reducing the cost of

maintaining and merging the code-level differences between the two projects [35].

Ubuntu’s development model, facilitated by DSCM, provides an archetype for CIP. However,

while DSCM tools may satisfy the five design principles for source code as in Ubuntu’s case, they

fail to do so for writing. Existing DSCM tools prove inappropriate for text because they are built

around several central design decisions that, while highly appropriate for source code, render the

tools problematic writers.

The most fundamental problem with the use of DSCM systems for text is the systems’ strong

emphasis on lines as the fundamental atomic unit for representing differences. Lines are an appro-

priate unit for source code because code is frequently understood, interacted, with, and measured

46

Figure 5-2: File containing lorem ipsum text

by lines [54, 61]. Expressions in source code are designed to exist on a single line — a practice

that is enforced in some programming languages like Python [72]. Representing differences in

lines makes sense because even a small change to a line of source code will represent a changed

expression that will require human reconsideration of the entire expression.

However, line-based approaches to representing differences is cumbersome and inappropriate for

writing text. Take, for example, the paragraph made up of the standard lorem ipsum text as shown

in Figure 5-2. Many wikis and WYSIWYM1 writing applications will internally represent each

paragraph as a single line. As a result, any change to a paragraph will result in a changed line

with no indication to the user as to which part of the line differs. This situation does not change,

however, if line breaks are taken into account. The “diff” from Bazaar of two paragraphs, the

first with the first sentence removed is shown in Figure 5-3. New lines are prefixed with “+” and

removed lines are prefixed with “-”. Removing the first sentence sets off a chain reaction that

change each line break in the paragraph. Because each line, taken individually, is different, the

1WYSIWYM stands for “What You See Is What You Mean” and is a term used in the LyX and LaTeX communities
to refer to a class of WYSIWYG or almost WYSIWYG application [39].

47

Figure 5-3: File containing the “diff” of the lorem ipsum text with a version without the first
sentence

entire text is marked as having changed and users must find any actual divergence by hand.

Conflict resolution tools rely on “diffing” so problems associated with line-by-line difference

representation are inherited and aggravated in conflict resolution within DSCM tools. In the

following example, there are conflicting changes in two related branches. The first branch (called

TREE) contains the lorem ipsum text with the first sentenced removed. The second branch (called

MERGE-SOURCE) is the branch from which the changes are being merged. In the example, this

branch contains the lorem ipsum text with both the first and second sentences extricated. Bazaar’s

merge functionality takes into account the history of the branch by referring to the two branches’

common ancestor (called BASE-REVISION) to compute the differences. The resulting conflict

representation is shown in the text of the file as shown in Figure 5-4.

The line-by-line method of conflict representation makes it difficult for writers to understand

exactly what has changed. Additionally, DSCM output is non-interactive and provides neither

hints nor methods for conflict resolution. Instead, DSCM users must hand-edit the conflict

representation using an external text editor before marking the conflict as resolved. This historic

48

Figure 5-4: File containing the representation of a conflict after a merge in Bazaar

separation between DSCM systems and editors is designed to support modularity considered

important in software development but creates a difficult barrier for writers.

Additional shortcomings in DSCM when used for documents include the lack of methods to

allows users to become aware of other collaborators; a requirement that all managed documents

be plain text; and command-line interfaces unfamiliar and prohibitively complex for many non-

programmers.2 Olive, a graphical front-end to Bazaar shown in Figure 5-5, attempts to provide a

more approachable interface. However, its close functional mapping to Bazaar commands and its

use of Bazaar’s line-by-line diff output is still highly geared toward programmers and confusing

for many less-technically skilled authors.

2Bazaar — famous for its relatively simple interface — has 91 sub-commands (each with several options and modi-
fiers) and 14 sub-commands that can be considered essential for all users to know.

49

Figure 5-5: Screenshot of the Olive front-end to Bazaar

50

Figure 5-6: Screenshot of the Emacs EDiff main window

5.2 Source Merge Tools and Modes (Emacs)

Not only are conflict resolution methods in DSCM system ill-suited to naive adaption to writ-

ing, they are notoriously difficult for software developers [45]. As a result, programmers have

created tools for automating merge processes. In most cases, these tools are designed to be used

in conjunction with SCM or DSCM tools. Their goal is to represent, reflect, and provide inter-

faces to resolve conflicts during merges of source code. Often, these take the form of specialized

merge tools like the Guiffy Merge Tool or the Perforce Merge Tool, Ellie Computing’s ECMerge

and Mikado Limited’s MergePlanet. In other cases, merge tools are integrated into programming

editors as “merge modes.” Well respected merge tools are built into the Eclipse and GNU Emacs

programming editors. Due to its longevity and reputation, I will analyze Emacs’s merge mode in

this section.

Emacs supports both two- and three-way merges and can support simple history sensitive merg-

51

Figure 5-7: Screenshot of the Emacs EDiff control panel

ing with its built in ediff-merge-with-ancestor function. The output of that command is

the three-paned view shown in Figure 5-6. It consists of a side-by-side comparison of the two

diverged branches. In the third, larger pane at the bottom of of the window is the merged version

containing a conflict representation similar to the output of DSCM as shown in Figure 5-4. This

window is used in conjunction with a control panel like the one shown in Figure 5-7 that allows

users to use their keyboard to navigate through changes and to select or move changes from either

branch into the merged document in the bottom pane.

When used for writing, merge tools like the Emacs’ merge mode suffer from the same same fun-

damental problem as DSCM by relying on lines as the fundamental atomic unit. This drawback

is complicated by a two-pane, side-by-side view that is optimized for showing differences between

changed lines. When used for writing, this system is poorly suited to keeping different panes in

sync and helping authors to contextualize changes.

However, merge tools like Emacs offer one distinct advantage over DSCM alone by computing

word-by-word diffs within changed regions of lines; the blue highlighted text in Figure 5-6 is a

representative example. Additionally, when several lines in a large file are changed, merge modes

provide a mechanism to step through a large file by jumping immediately to the next changed

“hunk” of changed lines and by allowing users to easily select the version from either of the

branches.

52

Figure 5-8: Example “diff” of a set of changes between two versions of wiki page in Wikipedia
running the Mediawiki wiki software

5.3 Wikis (Mediawiki)

The first wiki, written by Ward Cunningham, was designed to be an easy way to update pages

on the web. Soon after, wikis incorporated basic RCS-style SCM features [44]. On modern

wikis, every change to a page is saved as a new version and users can diff two revisions of a page

and retrieve any earlier version. As a representative example, I evaluated Mediawiki: the wiki

software that runs Wikipedia and many other wikis and perhaps the most featureful and popular

wiki software [78].

Mediawiki’s inspiration in SCM and merge tools is obvious in its two-pane diff page shown in

Figure 5-8. Like SCM and DSCM tools, changes in wikis are represented as changed lines. Like

merge tools, word-by-word differences are shown within the changed lines. Also like merge

tools, a two-pane, side-by-side model is adopted. With strong emphasis on word-by-word changes

53

Figure 5-9: History page for an article in Wikipedia running the Mediawiki wiki software

within regions, Mediawiki and other wikis offer document comparison functionality that is more

useful than source-based merge modes for representing differences between documents.

However, neither Mediawiki nor any other wiki has any support for branching or merging pages.

Like the older SCM tools that DSCM aimed to improve upon, wikis treat history as entirely

serial — as is apparent in Mediawiki’s history view as shown in Figure 5-9. Like centralized SCM

tools, wikis work without support for branches because they can easily impose a requirement

that users interact with a central server — the web’s standard interaction model. As a result,

wikis provide ways to revert or replay changes but no support for parallel authoring. Wiki

users are free to create parallel texts by cutting and pasting content but, with no model for

representing branches within the wiki, provide no technical mechanisms to help authors keep

diverged branches synchronized.

By providing a web browser-based interface, Mediawiki and other wikis have successfully lowered

54

the barrier to contribution and succeeded in providing a unified, consistent interface for collabo-

ratively authoring and publishing. However, while wikis have integrated ideas and technologies

from SCM, they have done little to import ideas from the latest generation of distributed DSCM

tools. While excellent at supporting collaboration, wikis are poor at supporting collaboration in

parallel. The result is less divergence and, ultimately, a failure of wikis to reach their full potential.

5.4 Track Changes (Microsoft Word)

A final technology for evaluation is the track changes interfaces built into the popular word pro-

cessors Microsoft Word and OpenOffice.org Writer. Designed originally for non-collaborative

work, the pervasive use of word processors in collaborative settings has lead to the inclusion

of many features designed to support cooperative writing. The most important of these in the

context of this analysis are the features related to tracking, recording, and representing changes.

Built around use by individual authors, Word provides no support for centralized repositories.

As a result, it allows parallel work on any copy of any document. While this opens the door

to a rich environment for CIP, Word provides little support for merging the resulting diverged

changes. This means that in many cases of document divergence with conflicting changes, any

divergence must be computed by hand through a side-by-side comparison of the complete docu-

ment by a human or, if the documents have diverged only slightly, through a simple two two-way

diff feature. Word emphasizes transparency by offering little integrated support for workflow.

However, the cost of merging any divergence is so high in the Word model that to be effective

the system requires it. Like wikis, Word serializes changes into a linear history and provides no

internal model for tracking branches.

Because document comparison functionality is limited, the most reliable methods for collabora-

tively using Word’s track changes functionality is to impose strong workflow. Frequently, this

happens through the use of a locking revision control system like RCS that ensures that only

one user can edit a document at a particular time. Examples include Microsoft’s SharePoint [23].

SharePoint, and similar Word-based systems, have no support for branching.

55

Figure 5-10: Screenshot of Microsoft Word showing changes made to a document

56

Word processors distinguish themselves from wikis and merge tools by offering truly text-specific

interfaces to record and reflect changes. Word uses colors to represent collaborators and reflects

changes in an in-line, character-by-character manner, as shown in Figure 5-10. This approach to

difference presentation is compact, contextualized, and text-specific.

5.5 Building on Related Work

DSCM goes a long way toward supporting CIP for writing by implementing algorithms and

methods for history-sensitive merging and work in parallel branches. However, DSCM falls

short of providing adequate tools for writers due to structural elements and interfaces that, while

appropriate for writers of source code, are problematic or confusing for writers of text. Merge

modes provide an interaction style that makes merging source code easier but, like DSCM, offers

interfaces that are substantially more useful for software developers than for writers. While

wikis make overtures towards text-appropriate interfaces and succeed in using web interfaces

to facilitate widespread collaboration that is fertile soil for CIP, they do so at the cost of all

branching and merging functionality. They do, however, Finally, word processors offer effective

document-specific interfaces to tracking, recording, and presenting changes but, like wikis, do so

without any support for parallel work. While none of these tools support CIP for writing, they

each demonstrate concepts that inform the design of a better system. Taken together, these tools

provide most of the components necessary for a novel, document specific interface for supporting

collaboration in parallel.

57

58

Chapter 6

Design

TextNet is a system designed to support collaboration in parallel for text. While interaction with

TextNet involves simple wiki-like operation when used alone, an instance of TextNet is designed

to interact with other instances to support collaborative work through parallel maintenance of

documents. TextNet builds on the concepts and theories described in Chapter 3 and the tech-

nologies described in Chapter 5 including DSCM, merge modes, wikis, and in-line word-by-word

diffs to build a new system that facilitates CIP for writing. The design goals for the system can

fall roughly in four major categories:

1. Branch accounting: Finding out what relatives exist and when they have changed;

2. Difference representation: Effectively representing changes to text on the web;

3. Conflict resolution: Presenting an effective interface for computing, displaying, and helping

users resolve conflicts upon merges;

4. Wiki interface: Making an interface work effectively in a web and wiki interface.

These criteria are directly motivated by and adapted from the theoretical design criteria for CIP

tools described in Section 3.4 but adapted to the particularities of collaborative writing. Theo-

retical criteria one and two — support for parallel work interspersed by merges and ad hoc style

59

— are a core description for CIP’s method of work and frame and motivate each of the technical

design criteria listed above. They serve as a higher level description of the purpose, as opposed

to a set of testable technical design criteria. Criteria one aims to ensure support transparency —

theoretical criteria two — and allows collaborators to quickly and easily decide when and who

to work with — theoretical criteria five. Criteria two is a restatement of theoretical criteria three

— effectively displaying and summarizing changes between documents. Criteria three, in turn, is

a restatement of theoretical criteria four — representing, reflecting, and resolving conflicts upon

merges.

Criteria four is a meta requirement: while several of the design criteria emphasize effectiveness

and appropriateness of interfaces, the requirement of a wiki-like interface introduces a design

requirement that aims to introduce an interface that is effective and appropriate for collaborative

writing. Wikis are already one of the most high-profile spaces for ad hoc collaboration on the

web. The adoption of a wiki interface helps satisfy theoretical criteria two while helping support

an accessible and effective model for each of the theoretical design goals.

6.1 Branch Accounting

While DSCM tools all create branches and store and merge changes between branches, no widely

used DSCM system maintains a list of related branches and the status of those relatives. Users

of DSCM tools are expected to merge changes between branches when prompted to by “out of

band” discussions like email. Bazaar has built-in support for “bound branches” which support a

parent-child relationship. Use of bound branches allows for a single one-level star topology of

branches where each branch node is connected directly to the central parent branch and to no

other branches as shown in Figure 6-1: to move a change from B to C would require that the

change be merged into A from B first before it is merged into C through A. While repositories

and history are distributed in Bazaar bound branches, the collaboration model is identical to

work under a centralized system; users can only see changes from other leaf nodes when they

are brought through the center. The inconveniences of this situation are aggravated in a more

complex star topology as shown in Figure 6-2. For branch E to see a change by D it would need

60

Figure 6-1: Bazaar branches in a simple “star” topology

Figure 6-2: Bazaar branches in a more complex topology of “nested” stars

to be merged by C, B, and A — in that order. The result, in most cases, is workflow designed to

support the hierarchy.

In CIP, changes must be able to be freely shared without in-depth knowledge of the network of

collaborators and should be able to create an inter-linked network of individuals. For example,

Author C in Figure 6-2 should be able to branch from Author B who may branch from Author

A; Additionally, authors A and C should be able to share changes directly and should be able

to collaborate with Author B or D in the future without risk of spurious conflicts. By support-

ing this mode of work in an ad hoc manner, TextNet allows for relationships unmediated by

workflow.

For the purpose of merging in a DSCM system, it is important to identify a common ances-

tor. In GNU Arch, the original FOSS DSCM system, merge algorithms required a star network

61

topology to ensure that there was a common ancestor. For example, merging D to E in Figure

6-2 would result in spurious conflicts because changes might seem be coming from both places

and the system would have no way to note that changes were shared between the two. Modern

systems, like Bazaar, are able to represent common ancestors as the sum of all changesets shared

between any two branches without regard to the branches’ relationship. In other words, a com-

mon ancestor need not exist as a revision in an extant branch if it can be represented internally

during the merge process. TextNet employs this second method of “graph merging,” which elim-

inates the need for workflow to maintain a star topology and allows for the type of ad hoc group

formation essential to CIP. In Figure 6-2, changes could be merged directly between D and E or

between D and B without first passing through C.

The only prerequisite for this method of merging is that repositories and changesets must be

uniquely identified. In TextNet, each page or article is stored as a Bazaar repository along with

several files outside of the SCM versioning that store essential metadata. TextNet uses Bazaar to

ensure that changesets are uniquely identified using a hash of the change itself combined with

associated metadata. Because TextNet is a wiki, it can uniquely identify documents based on the

URLs of the pages themselves. Each TextNet article comes with a “TextNet URL” visible on a

special “Branch tab” — a special page associated with each article in a TextNet wiki that deals

with branching related features — as shown in Figure 6-3, Area A.

Because TextNet computes common ancestors based on shared changesets, it does not need to

track the relationships of related branches to each other. TextNet can create a list of shared

changesets using the local and remote repositories themselves at the time of merging. For ac-

counting purposes, TextNet merely needs to store the location of each related branch along side

metadata, including when the branch was last synced and which changesets it contained at the

time of the last merge. TextNet stores this data in a file in each article’s associated SCM reposi-

tory and uses this data to create the related branch list for each page shown in Figure 6-3, Area

B.

When a new branch is created it can be either created de novo or can be created as a branch of

an existing page as shown in Figure 6-4. To assist in the process of discovery of related branches,

each branch created from an existing article will download the list of related branches from its

62

Figure 6-3: Screenshot of TextNet’s “Branch” tab

63

Figure 6-4: Create new page in TextNet

parent when it is created. Additionally, it will “ping” its parent branch, which will, by default,

record the child in the list of ancestors. At any time, users can explicitly add a relative by adding

a new TextNet URL on the branch management screen as shown in Figure 6-3, Area C. As

branches diverge, the number of differences and the effort required to resolve them increases and

the relevancy decreases. When collaboration between two branches becomes too labor intensive,

or less valuable, users can drop any branch from the list of relatives with the “Delete” button

associated with each branch.

Users are able to prompt TextNet to synchronize with each related branch and determine if there

are unmerged or unreviewed changes. This status is marked in the branch display window shown

in Figure 6-3, Area B. Using this interface, users can merge changes from branches with unmerged

changes at any time.

TextNet’s branch discovery and accounting system is the first system of its kind. Its model is

flexible, leaves the choice to collaborate or to diverge up to users, and does not enforce workflow.

It is designed to expose information about what is going on in a way that invites, but does not

enforce, collaboration in parallel. By emphasizing the role of collaborative work in related but

64

Figure 6-5: Visualization of two documents being worked on in parallel.

distinct branches, the branch accounting functionality in TextNet takes one major step toward

supporting CIP for writing.

6.2 Difference Computation and Representation

Using the Bazaar merge library, TextNet makes extensive use of history-sensitive merging to

minimize differences presented to users during merges. For example, if Bob branches from Alice

and if Alice then makes a change that Bob does not want to integrate, Bob can merge with

Alice but choose not to apply the changes in question. When Bob merges with Alice again later,

TextNet will not simply show a difference between the latest copy of Bob’s document and the

latest copy of Alice’s. Instead, it will show a set of differences that takes into account Bob’s

previous decision to diverge from in Alice in part. Figure 6-5 graphs out this example in detail.

While the set of differences between the two documents at the time of the second merge contain

the set of changes reviewed and rejected by Bob, it will be displayed. Differences are presented in

ways that take into account previous choices to provide optimally concise lists of changes.

As discussed in Chapter 5, wikis and other software-inspired writing tools have struggled to move

beyond difference representation methods optimized for source code that are often inefficient

or inappropriate for writing. Rather than interacting with text as series of lines, documents in

65

Figure 6-6: Word-by-word “diff” in TextNet

TextNet are represented as paragraphs and words. Documents are navigated, displayed, and diffed

first as paragraphs and then as words.

A simple example of the word-based diff change can be seen in Figure 6-6. Contrast this with

the same change in Mediawiki which was shown in Figure 5-8 in Chapter 5. While word-based

difference tools exist in Word, they are a novel addition to wikis. Additionally, TextNet uses

this word-by-word diff model to support a novel word-based merge mode that offers significant

improvements over the technologies shown in Chapter 5 Section 5.2 and which will be discussed

in more depth below in Section 6.3 of this chapter. By easily and efficiently computing and rep-

resenting changes, TextNet enhances transparency and makes parallel work increasingly possible.

Appropriate difference representation methods like those described in this section offer another

step toward bringing CIP for writing into reach.

66

Figure 6-7: Displaying conflicts in TextNet

6.3 Conflict Resolution

TextNet’s most important technical contribution is a text-specific interface for conflict resolution

and merging. While several word-by-word difference presentation systems predate TextNet, the

system offers the first interactive “merge mode” that is designed for text. In simple difference rep-

resentation, words can be represented as either being added or removed. In merges that take into

account history, there are up to three possible texts: the text from either of the two branches be-

ing merged or the common ancestor. In my design, I’ve extended the difference model to include

three colors for the ancestor, the current version, and the version from the branch. Changes are

represented first as changed paragraphs and then as changed series of words.

When initiating a merge, users are shown a full version of their document with conflicts high-

lighted using three colors and a color key at the top of the page as shown in Figure 6-7. Users

67

are instructed to click on each conflict and to resolve them. Clicking on a paragraph brings up a

conflict-resolution text box. This box contains a text field containing the the paragraph text with

the conflict represented inside. The text is surrounded by double braces and different versions are

separated from each other with angle brackets. As authors edit inside the text box, their changes

to the paragraph are updated in real time on the page. Users are also given a simple list of actions

they can take on the region. These actions include undoing any changes made and restoring the

conflict text or choosing any the version of the paragraph from either branch or from the base.

The interface can be seen in Figure 6-8.

In most wikis, users are asked to edit an entire page or a section at a time. TextNet employs this

full-document authoring mode during normal editing but chooses the paragraph-by-paragraph

model for conflict resolution. Use of a paragraph-based model is designed to help users focus

on the specific conflicting regions. Users can, however, edit other paragraphs (with or without

conflicts) by clicking on them at any point. Once a user has resolved a conflict or edited a

paragraph to their satisfaction, they can click the “Done” button below each text box to hide the

tools and edit box. When all conflicts on the page are removed, the user is invited to review and

save their changes.

Before saving, TextNet presents users with a simple diff (e.g., as in Figure 6-6) showing the changes

between the last saved version of the document being worked on with the draft of the the doc-

ument with all the conflicts resolved and changes merged in. If the user is unsatisfied, he or she

can continue and revise their changes. If satisfied, he or she can save them. Saving the changes

commits a new version of the page and marks any reviewed changes from the remote branch

as merged. By presenting the text specific mode for resolving conflicts upon merges, TextNet

satisfies the third and most difficult requirement for CIP as laid out in the beginning of this

chapter.

6.4 Wiki Interface

TextNet was originally designed as a stand-alone desktop editor. This model provided extensive

control over UI and interaction design. However, based on initial feedback, the system was re-

68

Figure 6-8: Conflict resolution within a paragraph in TextNet

69

designed as a wiki. As a wiki, TextNet’s conceptual goals remain unchanged; however, the design

underwent major reevaluation and many of the most onerous technical and design challenges

were associated with ensuring that the system operates effectively on the web.

TextNet’s user interface is based on Samat Jain’s minimalist NullBook skin for Mediawiki. From

a functional perspective, the layout closely follows Mediawiki which is familiar to many wiki

users. TextNet uses explicit wiki-style markup, which offers both advantages and disadvantages

over WYSIWYG editing. WYSIWYG systems frequently have trouble graphically representing

changes in markup (e.g., showing the addition or removal of bold-facing). The use of wiki text

avoids the need for replicated text, supra-textual annotation, and omitted information associated

with common WYSIWYG solutions to representing markup changes; every markup change is a

change to the wiki text and is clearly visible in diffs.

Perhaps most importantly, wikis allow for editing in familiar, if not featureful, text editing in-

terfaces through their use of simple HTML <textarea> boxes. Because WYSIWYG on wikis is

highly wiki-specific, I chose to avoid in-browser WYSIWYG editing in order to open the possi-

bility of use of TextNet’s conflict resolution mode in conjunction with many existing wikis and

dialects of wiki markup. To mitigate the drawbacks of this approach, TextNet makes extensive

use of pure Javascript wiki-text rendering. As a result, changes made in TextNet text boxes can

be rendered in real time on the page. Through this process, many of the benefits of a WYSIWYG

are joined with the benefits of cross-platform and inter-wiki compatibility and more lightweight

text-entry interfaces.

TextNet borrows heavily from other wikis in that it allows viewers to quickly and easily transi-

tion to authoring. However, while collaboration in most wikis is based around the requirement

of a single version of a document or page at any given point, TextNet encourages authors to, if

necessary, make their changes in a new branched page. By displaying a full view of history and

offering full decision-making power to every collaborator, TextNet uses a wiki-like approach that

emphasizes transparency. However, TextNet breaks the highly centralized nature of wikis by al-

lowing parallel work in ways that traditional wikis do not. When combined with the text-specific

modes of difference representation, systems for branch accounting, and the TextNet model of

conflict resolution for text, TextNet offers a compelling design for the support of CIP for writ-

70

ing.

6.5 Technical Design

TextNet is implemented primarily in the Python programming language. Python was selected

for its wide selection of relevant libraries and because of its tight integration into the One Laptop

per Child XO-1 environment. Potential inclusion of TextNet in OLPC was an important long-

term goal for the system. Implementation in a language other than Python would have incurred

additional dependencies, which may have made deployment on OLPC less likely.

Additional code for TextNet, including most of the TextNet conflict resolution system requiring

real-time feedback and interaction with the users, is written in Javascript. Javascript was selected

because it is cross-platform, browser independent, does not require the installation of additional

software, and is one of the programming environments available on the OLPC XO-1.

Rather than reimplementing features in extant SCM and DSCM tools, TextNet makes extensive

use of bzrlib, the Python API interface to the Bazaar DSCM system. While there were several

other compelling DSCM systems on which to base TextNet — most notably Git and DARCS

— Bazaar is implemented in Python and, as a result, incurs minimal extra dependencies while

maximizing integration simplicity on the XO-1. TextNet uses Bazaar as a database for differential

storage and retrieval and uses bzrlib’s implementation of mesh merging.

TextNet’s web interaction is built using the web.py web framework. Built by Aaron Swartz,

web.py’s primary design goal is to be lightweight and flexible. Because TextNet uses a Bazaar

back-end as a database, it does not use a relational database. Without the need for a database

handler or an object relational mapper, web.py served as an ideal base for simple request and

session handling and web server integration.

For presentation and user interface programming, TextNet uses Cheetah templates. Implemented

in Python, Cheetah templates creates a strong barrier between presentation logic and program-

ming logic which will make integration of TextNet into other wiki environments and back-ends

easier in the future.

71

For wiki text rendering, TextNet targeted OLPC’s Crossmark specification. Unfortunately, no

mature or tested implementation of Crossmark exists to date. Instead, TextNet uses the Mark-

down markup language — Crossmark’s most direct inspiration. Markdown is a simple wiki

language that makes the creation of “invalid” markup difficult. Because it is widely used, there

exist several implementations including libraries in Python and Javascript that TextNet was able

to use.

Finally, TextNet employed the Showdown library to display real-time rendering of changed Mark-

down text. Showdown is a simple Javascript Markdown-to-HTML converter implemented in

Javascript. Showdown is reasonably fast, cross platform, and runs without modification on the

OLPC Javascript environment. A simple version using Instaview supporting Mediawiki markup

was also created but was not evaluated.

6.6 Design Timeline

TextNet’s initial target audience were editors in the Citizendium project. At the time, Citi-

zendium was planned as a sustained parallel “fork” of Wikipedia and was an ideal test-case for

support and evaluation of tools designed to support CIP for writing. In January 2007, I designed

a first version of a TextNet interface for this target. This version was a stand-alone merge-tool

using the PyGTK desktop library. The design was built to interact with Mediawiki but was not,

itself, a wiki. This technical design introduced a high degree of control of the user interface and

and interaction modes. The system included a module based on the Mediawiki PyBotFramework

that could extract and duplicate articles from Mediawiki instances and could, through this pro-

cess, generate DSCM branches from existing Medaiwiki pages including both Citizendium and

Wikipedia.

In March, the Citizendium team made a decision to deviate from their previous plan and to write

their encyclopedia from scratch instead of as a fork of Wikipedia. Without a base in Wikipedia,

Citizendium’s use for CIP support was reduced dramatically. At the same time, OLPC was

struggling with issues connected to merging offline and parallel work in the context of wiki

72

Date Version Milestone
January 15 0.0.1 non-web interface for use with Citizendium
March 1 0.0.2 redesign as a stand-alone wiki appropriate for OLPC
May 7 0.1 working version with demonstrations at ML sponsors week
May 15 0.2 iterations based on feedback
June 1 0.3 OLPC version of TextNet (MikMik) created for J8 Summit
July 15 0.4 final version of tool for final evaluation

Table 6.1: Design-timeline table

authoring. In response, I redesigned TextNet as a Python wiki usable both on OLPC and as a

stand-alone tool.

I demonstrated a working version of TextNet in the first week of May for the MIT Media Lab

“sponsors week.” Subsequently, I iterated on the design based on informal feedback during

demonstrations and on discussions with individuals at OLPC.

OLPC’s Director of Content SJ Klein invited me to a meeting at UNICEF in mid-May where I

demonstrated TextNet to a team at UNICEF’s Division of Communication that, among other

projects, works to support collaborative writing among highly disconnected groups of young

people. The group was was interested in using OLPC XO-1’s to support collaborative writing

at the J8 summit. Working with interns at OLPC, I prepared a OLPC “activity” (i.e., a bundled

application that can easily be installed on the XO-1) of TextNet called MikMik over the first of

June. While, for technical reasons, the tools was not widely used at the J8 meeting, UNICEF

staff members worked with me to help evaluate TextNet based in part on their experiences at the

summit.

73

74

Chapter 7

Evaluation

TextNet was evaluated in three ways. First, a simple engineering analysis evaluated the systems

ability to fulfill a set of features goals stated in the initial proposal for the system. Second, an in-

depth review of the system for usability with a usability expert who was actively engaged in the

one of the system’s target communities evaluated TextNet’s ability to provide this functionality

in ways that would be accessible and discoverable. Finally, and most importantly, a series of user

tests evaluated the software’s ability to take advantage of features central to CIP. While results

of the initial evaluation are mixed, they show potential for the system in several important areas

and provide a clear set of goals for future development and further work.

Much of TextNet’s evaluation involved work with a team within UNICEF’s Division of Com-

munication. Through a series of projects, including the J8 summit described in depth in Section

2.1, the department is heavily involved in collaborative writing with young adults — particularly

on wikis. Due to UNICEF’s extensive work with communities with intermittent Internet con-

nectivity, the group is interested in a system like TextNet to help support offline collaboration.

Because of the J8 and a series of other projects, the group is also interested in pursuing other

forms of CIP with young adults.

I worked with UNICEF before, during, and after the J8 conference. In addition to the evaluation

described here, earlier iterations of the system were designed with informal input from UNICEF

75

staff members and several versions were tested informally and iterated on based on early feedback.

Evaluation of TextNet 0.4 (see Table 6.6) with UNICEF centered on their extensive experience us-

ing wikis and other collaborative writing tools with children and with their hands-on experience

acting as technical facilitators during the J8 summit.

7.1 Engineering Evaluation

The most simple method of evaluation evaluates TextNet’s ability to satisfy the initial feature

goals. This list of feature goals included (1) functionality to discover and to track the status

of branches; (2) functionality to provide history sensitive merging between wikis running on

separate servers; (3) an ability to provide a wiki-based in-line or word-based method of displaying

changes; and (4) features to represent and resolve conflicts using a word-based interface. The

current version of TextNet 0.4 released July 15 includes tested functionality satisfying all four

goals.

7.2 Usability Review

The system was evaluated for usability in a 45-minute session with a UNICEF program manager

and usability expert. This expert has ten years of experience in UNICEF and his work focuses

on user interface evaluation, improvement, and design. He has experience with wikis through

the the MoinMoin wiki software used by UNICEF during the J8 summit, helped provide us-

ability feedback on that system and has made several edits on Wikipedia, but has no other wiki

experience. His only other experience with collaborative writing systems is what he describes

as extensive experience with Microsoft Word’s track changes features described in Section 5.4.

The expert used the system for 15 minutes, in parallel with me, tested all the core features of the

system, then did a 30-minute-long walk-through and evaluation of the system.

The usability expert was most supportive of the the in-line display of word-by-word differences,

which he felt were a step forward over other wikis. He was supportive but less enthusiastic about

the paragraph-by-paragraph conflict resolution mode. He felt that the description of “Old Text,”

76

“Your Text,” and “Remote Branch’s Text” were unclear in the merge interface and suggested that

users would have trouble determining where changes were coming from. While he felt that the

conflict resolution mode was reasonably simple, he also believed that important concepts about

branch relationships essential to the system’s effectiveness would be undiscoverable for many

users.

Additionally, he expressed concern about the use of color in the merge interface which might ren-

der the system inaccessible to color-blind users and suggested that using differences in font style

and weight in addition to judicious choice of variation in color detectable by colorblind users

would mitigate this issue. He suggested that the complexity of the system would become pro-

hibitively complex with networks of active collaborators larger than three or four collaborators.

The largest user tests involved only three individuals, so his hypothesis remains untested.

Finally, the expert was very critical about the lack of a WYSIWYG interface which, at the J8

summit and and other work, provided a significant barrier to use by young people. A review of

other wiki usability studies suggested that this concern — while an important usability barrier —

is an issue common to and inherited from other wikis [18, 60].

7.3 User Tests

The system was tested with eight people at the UNICEF Division of Communication at UNICEF

headquarters in New York City. Each user had been involved in support of collaborative writing

using wikis during the J8 summit. The users had varying degrees of technical experience and

different roles at UNICEF. Only one person had actively used wikis before the J8. Five were

familiar with Word’s track changes functionality and three users had experience with Google’s

collaborative document editor. Most users claimed that they were comfortable with wikis but

only one use — a programmer — expressed that he found them “straightforward,” and, “very easy

to use.”

Testers used the system in two groups of two. The four remaining users used it individually but

merged their changes with that of other UNICEF members who had used the system previously.

77

Before evaluation, TextNet was briefly described to each user without reference to any particular

use cases. Four users suggested potential uses for the system and three mentioned the potential for

the coordination of off-line work. One group of two recognized the potential for maintenance

of diverged document comparing it favorably to Google docs and complaining that Google docs

made it extremely difficult to have multiple copies of a single document suggesting that it was,

“more like overwriting than writing.”

Each user was given a task of editing a short document about the J8 summit based on text from

the Wikipedia article on the subject [7]. Several obvious mistakes were inserted into the text

before testing in ways that made the “fix” non-obvious. Notes were taken during each test and

two tests were recorded with video. Users were given the following tasks:

1. Edit an existing version of the article removing any obvious errors to the document and

adding or changing as much or as little as desired;

2. Merge changes from a (seeded) branch that had also fixed the obvious errors. This involved

resolving at least two conflicts in each case;

3. Improve the article in a substantive way. This was intentionally left open-ended and was

executed concurrently with another editor given the same task but working in a different

branch — a role that I filled myself;

4. Merge changes from the branch under concurrent editing and resolve any resulting conflicts

in the process;

5. Create a new branch based off the current branch.

Each user completed at least the first four tasks although most had at least some assistance. Users

took an average of 15 minutes to complete the tasks and spent an additional 10–15 minutes

discussing the system immediately following their use of TextNet. The second merge task was, in

almost every case, significantly faster than the first (on average, less than 40% of the time). Every

user was able to resolve the conflicts although two unintentionally lost at least some of their their

own changes.

78

Three users used only the buttons in the merge interface before being prompted and three pre-

ferred to edit the wiki text; two used a mixture of both. All users who edited in the text boxes

understood the wiki text representation of conflicts and editing involved to resolve them without

explanation. Users were, however, much less clear about the use of the merge-interface buttons

and were, echoing the evaluation described in Section 7.2, initially unclear as to what “Old Text,”

“Your Text,” and “Remote Branch’s Text,” referred to. When users were shown a drawing of

a simple branch diagram representing their merge operation, they showed signs of immediate

understanding. One user admitted that she had not, “really understood what [she] was doing,”

before seeing the drawing.

Testing revealed several important usability issues. The use of similar highlight colors and back-

grounds in the merge mode screen and the change review summary led both video-taped users to

attempt to click on the view text in the change summary screen. Users also had difficulty finding

the TextNet URLs and creating branches of existing documents which cannot currently be done

from the document to be branched from as several users assumed. Users understand, but did not

comment on, the word-by-word difference representation system.

Account management on the MoinMoin J8 wiki led to major headaches during the J8 Summit.

Photo uploading continues to be one of the most popular features among the youth UNICEF

works primarily with. Users suggested that TextNet’s requirement to create accounts and the

inability of TextNet to upload photos would prove problematic during the J8 Summit or at a

similar event.

Two user expressed a desire for a WYSIWYG interface although no user made active use of

markup during their editing. Five users described what they felt was potential for the system in

the J8 or in future events but two suggested that they would not want to replace the current Moin-

Moin system and instead might want to use TextNet or similar tool primarily for users working

offline or to allow UNICEF staff members to merge changes for the youth. One suggested that

the system, as is, might be too conceptually complex for young people or novice users.

79

7.4 Lessons Learned

Before evaluation, I hypothesized that usability issues and difficulties in using TextNet’s conflict-

resolution system would present the most pressing problems for users. In fact, evaluation both

with the usability expert and in user tests demonstrated that the most difficult barriers to effective

use of TextNet were rooted in the underlying complexity of the system and users’ unfamiliarity

with the concepts and processes at play rather than with the interface. Users were able to review

and resolve changes but did not, however, always understand where the changes were coming

from. A future version of TextNet may be able to address this by supporting explicit graphical

branch visualizations that shows users the relationships of branches involved in a merge opera-

tion.

These issues are perhaps indicative of a deeper problem: users are able to learn how to use TextNet

but, in practice, do not always know when to use it or why they should — even when they

understand and are excited by the concepts and purpose of the system. Cooperation in parallel

is a mode of cooperative writing that is foreign enough from normal modes of group writing

that any method of support may faces similar challenges. TextNet seems to do an adequate, if

imperfect, job of supporting CIP. However, it seems incomplete for many users without doing a

better job of conveying what CIP is and what it looks like from within the system.

80

Chapter 8

Conclusion

I am an active software developer and a passionate advocate of free software. It is through my

work in FOSS communities, and in Ubuntu in particular, that I first experienced and came to

understand the power of the development methodology that I’ve called cooperation in parallel.

It was my experience with CIP in free software communities that motivated me to explore the

facilitation of similar modes of collaboration in my other passionate creative pursuit: writing.

This thesis is an exposition and an exploration of this new, powerful, mode of work. It attempts

to defined and begin to understand CIP so that it can be harnessed, where appropriate and where

possible, toward more and effective collaboration. It analyzes CIP theoretically by looking to

the CSCW and CSCWr communities and to FOSS developers using SCM and DSCM tools.

It explores the differences between writing and writing code in a way that tries to inform the

analogies between software and writing at the heart of this process and to add a social dimension

to the description of CIP for documents. It builds on important related technologies in order

to offer an informed design for a system that might support cooperative, parallel writing. It

evaluates that system in its ability to support the core technical principles at the heart of CIP.

As an argument for a new type of collaborative work, the motivation for this paper — if not the

core theses themselves — is inherently speculative. While CIP is useful for software developers

today, the real potential for CIP for writing is those places we have not yet imagined. CIP for

81

software is like a vocabulary or a set of terms that can be used to communicate a new set of

concepts; it is difficult to explain what a vocabulary lets one communicate to someone without

that vocabulary. In this early period, CIP for writing is in an analogous situation.

TextNet offers a solid, if rough, first attempt at supporting CIP in writing. DSCM tools are being

written and revised by FOSS communities to support evolving methods in FOSS communities.

TextNet and similar tools will also need to be developed through a long iterative process alongside

collaborative writing communities. Before succeeding, these technologies and communities will

also need to grow and develop together — in parallel.

82

Bibliography

[1] Bernstein v. US Department of State, 1996. 922 F. Supp. 1426.

[2] Bernstein v. US Department of State, 1996. 945 F. Supp. 1279.

[3] Bernstein v. US Department of State, 1997. 974 F. Supp. 1288.

[4] Alphabetical list of programming languages. Wikipedia, July 2007. Available:

http://en.wikipedia.org/wiki/Alphabetical_list_of_programming_languages.

[5] Article validation proposals. Meta Wikimedia, Aug. 2007. Available:

http://meta.wikimedia.org/wiki/Article_validation_proposals.

[6] G8. Wikipedia, July 2007. Available: http://en.wikipedia.org/wiki/G8.

[7] J8. Wikipedia, July 2007. Available: http://en.wikipedia.org/wiki/J8.

[8] List of basic dialects. Wikipedia, July 2007. Available:

http://en.wikipedia.org/wiki/List_of_BASIC_dialects.

[9] Polyglot (computing). Wikipedia, Aug. 2007. Available:

http://en.wikipedia.org/wiki/Polyglot_(computing).

[10] Revision control. Wikipedia, July 2007. Available:

http://en.wikipedia.org/wiki/Revision_control#Distributed_revision_control.

[11] Baldwin, C. Y., and Clark, K. B. Design Rules, Vol. 1: The Power of Modularity. The MIT

Press, Mar. 2000.

83

[12] Beck, E. E. A survey of experiences in collaborative writing. Springer-Verlag, Germany, 1993,

pp. 9–28.

[13] Black, M. J. The art of code. PhD Dissertation, University of Pennsylvania, 2002.

[14] Bly, S. A., Harrison, S. R., and Irwin, S. Media spaces: bringing people together in a video,

audio, and computing environment, vol. 36. ACM Press, 1993.

[15] Bond, G. W. Software as art, vol. 48. ACM Press, 2005.

[16] Bruns, A. Wikinews: The next generation of alternative online news? Proceedings Associa-

tion of Internet Researchers Conference, Chicago (2005).

[17] Bryant, S. L., Forte, A., and Bruckman, A. Becoming wikipedian: transformation of par-

ticipation in a collaborative online encyclopedia. In GROUP ’05: Proceedings of the 2005

international ACM SIGGROUP conference on Supporting group work (New York, NY, USA,

2005), ACM Press, pp. 1–10.

[18] Desilets, A., Paquet, S., and Vinson, N. G. Are wikis usable? The 2005 International

Symposium on Wikis. San Diego, California, USA. October (2005), 17–18.

[19] Dillenbourg, P., Baker, M., Blaye, A., and O’Malley, C. The evolution of research on col-

laborative learning. Learning in Humans and Machine: Towards an interdisciplinary learning

science (1996), 189–211.

[20] Dix, A., and Miles, V. C. Version control for asynchronous group work. YCS 181, Depart-

ment of Computer Science, University of York, (Poster presentation HCI’92: People and

Computers VII), 1992.

[21] Dix, A., Rodden, T., and Sommerville, I. Modeling versions in collaborative work. In IEE

Proceedings in Software Engineering (1997).

[22] Dourish, P., and Bellotti, V. Awareness and coordination in shared workspaces. In CSCW

’92: Proceedings of the 1992 ACM conference on Computer-supported cooperative work (New

York, NY, USA, 1992), ACM Press, pp. 107–114.

84

[23] Dowler, A. Integration guide for Microsoft Office 2003 and Win-

dows SharePoint Services. Microsoft TechNet, June 2003. Available:

http://www.microsoft.com/technet/windowsserver/sharepoint/v2/spoffint.mspx.

[24] Ellis, C. A., Gibbs, S. J., and Rein, G. L. Groupware: Some issues and experience. Commu-

nication of the ACM 34 (1991), 38–58.

[25] Esolang. Esoteric programming languages. Esolangs Wiki, July 2007. Available:

http://esoteric.voxelperfect.net/wiki/Esoteric_programming_languages.

[26] Fogel, K. F. Open Source Development with CVS. Coriolis Group Books, 1999.

[27] Fogel, K. F. Producing Open Source Software: How to Run a Successful Free Software Project.

O’Reilly, 2005.

[28] Foundation, F. S. GNU coding standards. Free Software Foundation, June 2007. Available:

http://www.gnu.org/prep/standards/html_node/index.html.

[29] Gelernter, D. H. Machine Beauty: Elegance and the Heart of Computing (Repr ed). Basic

Books, 1999.

[30] Gonzalez-Barahona, J. M., Perez, M. A. O., de las Heras Quiros, P., Gonzalez, J. C., and

Olivera, V. M. Counting potatoes: the size of Debian 2.2. Upgrade Magazine 2 (2001), 60?66.

[31] Grimmelmann, J. Incantations, legal and computational. PrawfsBlawg, May 2007. Available:

http://prawfsblawg.blogs.com/prawfsblawg/2007/05/incantations_le_2.html#more.

[32] Hassine, T. The dynamics of NPOV disputes. Proceedings of Wikimania 2005: The First

International Wikimedia Conference (2005).

[33] Henricson, M., and Nyquist, E. Industrial Strength C++: Rules and Recommendations.

Prentice Hall, Sept. 1996.

[34] Hill, B. M. Literary collaboration and control. Available:

http://mako.cc/projects/collablit/, May 2003.

[35] Hill, B. M. To fork or not to fork: Lessons from ubuntu and debian. In Processings of

LinuxTag (Karlsruhe, Germany, July 2005).

85

[36] Hill, W. C., Hollan, J. D., Wroblewski, D., and McCandless, T. Edit wear and read wear. In

CHI ’92: Proceedings of the SIGCHI conference on Human factors in computing systems (New

York, NY, USA, 1992), ACM Press, pp. 3–9.

[37] Husted, K., and Micailova, S. Diagnosing and fighting knowledge-sharing hostility. Organi-

zational Dynamics 31 (Aug. 2002), 60–73.

[38] Jones, S. MILO: A Computer-based tool for (co-)Authoring structered documents. Springer-

Verlag, Germany, 1993, pp. 185–202.

[39] Kastrup, D. Revisiting WYSIWYG paradigms for authoring LATEX. Proceedings of the 2002

Annual Meeting, TUGboat 23 (2002).

[40] Kirby, A., Rayson, P., Rodden, T., Sommerville, I., and Dix, A. Versioning the web. In 7th

International Workshop on Software Configuration Management (Boston, MA, 1997), R. Con-

radi, Ed., pp. 163–173.

[41] Lakhani, K. R., and McAfee, A. P. Harvard Business School case: Wikipedia (A), 2007.

Available: http://courseware.hbs.edu/public/cases/wikipedia/.

[42] Lakhani, K. R., and Wolf, R. G. Why hackers do what they do: Understanding motiva-

tion and effort in free/open source software projects. Perspectives on Free and Open Source

Software (2005).

[43] Lessig, L. Code and Other Laws of Cyberspace, 2nd ed. Basic Books, June 2000.

[44] Leuf, B., and Cunningham, W. The Wiki way: quick collaboration on the Web. Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2001.

[45] Leyton, R. Version control: A misunderstood technology. Leyton.org, June 2005. Available:

http://www.leyton.org/diary/2005/06/06/version-control-a-misunderstood-technology/.

[46] Lippman, A., Bender, W., Soloman, G., and Saito, M. Color word processing. Computer

Graphics and Applications, IEEE 5 (1985), 41–46.

86

[47] Lipshaw, J. More on similarities between programming language and

the language of law. Legal Profession Blog, May 2007. Available:

http://lawprofessors.typepad.com/legal_profession/2007/05/more_on_similar.html.

[48] Lowry, P. B., Curtis, A., and Lowry, M. R. Building a taxonomy and nomenclature of

collaborative writing to improve interdisciplinary research and practice. Journal of Business

Communication 41 (2004), 66.

[49] Mateas, M., and Montfort, N. A box, darkly: Obfuscation, weird languages, and code

aesthetics. Proceedings of digital arts and culture (2005).

[50] Mingst, K. Eight, group of, July 2007. Available: http://www.britannica.com/eb/article-

9403959.

[51] Moeller, E., and Hill, B. M. Definition of Free Cultural Works, 2007. Available:

http://www.freedomdefined.org/.

[52] Nelson, T. Project xanadu history, 2001. Available: http://xanadu.com/HISTORY/.

[53] Nelson, T. H. Literary Machines, 3rd ed. Self Published, Swarthmore, PA, 1981.

[54] Park, R. E. Software Size Measurement: A Framework for Counting Source Statements.

Carnegie Mellon University, Software Engineering Institute, 1992.

[55] Perens, B. The open source definition. Open Sources: Voices from the Open Source Revolution

(1999), 171–188.

[56] Petkovsek, M., Wilf, H., and Zeilberger, D. A=B. A.K. Peters, Ltd., 1996.

[57] Posner, I. R., and Baecker, R. M. How people write together. Proceedings of the Twenty-fifth

Annual Hawaii International Conference on System Sciences 127 (1992), 138.

[58] Raymond, E. S. The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. O’Reilly and Associates, Sebastopol, CA, 1999.

[59] Reagle, J. A case of mutual aid: Wikipedia, politeness, and perspective taking, 2004. Avail-

able: http://reagle.org/joseph/2004/agree/wikip-agree.html.

87

[60] Reitmayr, E. Usability test results: Editing informa-

tion in the german wikipedia, Feb. 2006. Available:

http://de.wikipedia.org/wiki/Wikipedia:WikiProjekt_Usability/Test_Februar_2006.

[61] Rosenberg, J. Some misconceptions about lines of code. Proceedings of the 4th International

Software Metrics Symposium (Metrics ?97) (1997), 137–142.

[62] Schade, O., Scheithauer, G., and Scheler, S. One program in 1111 variations, 2007. Available:

http://www.99-bottles-of-beer.net/.

[63] Schmidt, K. The problem with awareness: Introductory remarks on awareness in CSCW.

Computer Supported Cooperative Work (CSCW) 11 (2002), 285–298.

[64] Searle, J. R. Speech Acts: an essay in the philosophy of language. Cambridge University Press,

1980.

[65] Sharples, M., Goodlet, J. S., Beck, E. E., Wood, C. C., Easterbrook, S. M., and Plowman,

L. Research issues in the study of computer supported collaborative writing. Springer-Verlag,

Germany, 1993, pp. 9–28.

[66] Skaf-Molli, H., Ignat, C., Rahhal, C., and Molli, P. New work modes for collaborative

writing. In EISWT-07 (2007).

[67] Stallman, R. M. Free Software, Free Society: Selected Essays of Richard M. Stallman. Free

Software Foundation, Oct. 2002.

[68] Tatar, D. G., Foster, G., and Bobrow, D. G. Design for conversation: lessons from Cognoter.

Academic Press Ltd., 1991.

[69] Tichy, W. F. Design, implementation, and evaluation of a Revision Control System. IEEE

Computer Society Press, Tokyo, Japan, 1982.

[70] Torvalds, L. Kernel scm saga.., Apr. 2005. Available: http://kerneltrap.org/node/4968.

[71] UNICEF. About j8. Junior 8, 2007. Available:

http://www.j8summit.com/summit/showpage.php?id=362.

88

[72] van Rossum, G. Python Reference Manual. Centrum voor Wiskunde en Informatica, 1995.

[73] Vaughan-Nichols, S. J. Details emerge about Debian linux plan, July 2005. Available:

http://www.eweek.com/article2/0,1895,1836184,00.asp.

[74] Vaughan-Nichols, S. J. Linspire, Canonical, Freespire, Ubuntu join forces. Desktop Linux

(Feb. 2007). Available: http://www.desktoplinux.com/news/NS7103672739.html.

[75] Viegas, F. B., Wattenberg, M., and Dave, K. Studying cooperation and conflict between

authors with history flow visualizations. In CHI ’04: Proceedings of the SIGCHI conference

on Human factors in computing systems (New York, NY, USA, 2004), ACM Press, pp. 575–

582.

[76] Voss, J. Measuring wikipedia, 2005. Available: http://eprints.rclis.org/archive/00003610/.

[77] Wales, J. Open plenary, Aug. 2006. Available:

http://wikimania2006.wikimedia.org/wiki/Opening_Plenary_%28transcript%29.

[78] Wales, J., and President, W. F. Wikipedia sociographics. Talk at the 21C3-Conference, 2004.

[79] Walker, L. On local sites, everyone’s a journalist. The Washington Post (Dec. 2004), E01.

[80] Wei, C., Maust, B., Barrick, J., Cuddihy, E., and Spyridakis, J. H. Wikis for supporting

distributed collaborative writing. In The proceedings of the annual conference of the Society for

Technical Communication 52nd Annual Conference (Arlington, VA, 2005), pp. 8–11.

[81] Wheeler, D. A. Comments on Open Source Software / Free Software (OSS/FS)

Software Configuration Management (SCM) systems, May 2005. Available:

http://www.dwheeler.com/essays/scm.html.

[82] Wheeler, D. A. The most important software innovations, June 2007. Available:

http://www.dwheeler.com/innovation/innovation.html.

[83] Williams, S. Free as in Freedom: Richard Stallman’s Crusade for Free Software, 1 ed. O’Reilly

Media, Inc., Mar. 2002.

[84] Yeomans, M. The birth of Wikinews. Citizen’s Kane, 2005. Available:

http://citizenskane.blogspot.com/.

89

90

Acknowledgments

Thanks to my thesis adviser Walter Bender who was willing to work with me on this thesis

despite having been on leave from the lab for the complete duration of the project. He took time

out of an unimaginatively busy schedule to help me. As president of OLPC, Walter really did

have better things to do than work with me on a only tangentially related Masters thesis. His

help and direction was always helpful and my work is better as a result. I will treat his work with

me as an investment that I hope to repay to him and the community he took time away from

with some of the skills I’ve learned in this process.

Thanks also to Chris Csikszentmihályi for advice, time, effort, and arguments. In Chris’s group,

I found the best home a lab "orphan" could hope for. At times, my work pushed the limits of

what Chris was comfortable with — a reversal of roles for Chris perhaps — but he challenged

himself to see the benefits and relevance of my work that was both coming from and serving

fields he was not initially familiar with. I can’t thank him enough for his effort, energy, and

flexibility.

Thank you to Biella Coleman for working with me on the chapter on writing and writing code.

Biella helped me add a layer of reflectiveness — and a type of methodology — that most Media

Lab thesis go without. I believe that other theses are poorer without someone like Biella to help

direct them.

Thanks as well go to the Computing Culture group including Adam Whiton, Alyssa Wright,

Annina Rüst, Kelly Dobson, and Noah Vawter, in addition to CompCult UROPs Courtland

Allen, John Dong and Justin Sharps. This project has interrupted and affected our work and

91

friendships but you’ve provided a fantastic environment for learning and support. Also thanks

to my Electronic Publishing colleagues Dustin Smith, Bo Morgan, Ian Eslick and Hyemin Chung

who provided a welcoming home for me during my first year at the lab.

It seems cliché to thank your partner for putting up you with during the process of a long research

or writing project but I can’t think of an acknowledgment that’s more deserved. The many late

nights, glazed looks, and panicked moments during the process of creating this document were

difficult for me but I always had a future feeling of accomplishment to motivate me. Mika had

no such reward but patiently and supportively endured the process with me. I can’t thank her

enough.

Thanks as well to my publisher Deborah Williams-Cauley and my friend Joshua Gay for gener-

ously taking time out to proofread my thesis. Your work is invisible but it’s not unappreciated.

Final thanks go to my friends and cohorts from the Boston and Cambridge free software and

free culture communities and in particular, the group of people on #yukidoke and #acetarium.

You’re both the inspiration for this work and the community I hope takes advantage of it to

achieve even greater things.

92

