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ABSTRACT
A core aim for designing constructionist learning systems and
toolkits is enabling “wide walls”—a metaphor used to de-
scribe supporting a diverse range of creative outcomes. En-
suring that a broad design space is afforded to learners by a
toolkit is a common approach to achieving wide walls. We
use econometric methods to provide an empirical test of the
wide walls theory through a natural experiment in the Scratch
online community. We estimate the causal effect of a pol-
icy change that gave a large number of Scratch users access
to a more powerful version of Scratch data structures, effec-
tively widening the walls for learners. We show that access
to and use of these more powerful new data structures caused
learners to use data structures more frequently. Our findings
provide support for the theory that wide walls can increase
engagement and learning.
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INTRODUCTION
Inspired by the work of mathematician and epistemologist
Seymour Papert, a large and growing body of research in HCI
has focused on the design of constructionist toolkits for learn-
ing. Well-known examples of these toolkits include Logo [30,
1], StarLogo [34], NetLogo [43], Lego Mindstorms [39], Sto-
rytelling Alice [19], Scratch [36], and MIT App Inventor [44].
One of the core aims of constructionism, that of empower-
ing the learner to use knowledge in personally meaningful
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Figure 1. Scratch code for a program that uses an SCV to
keep track of global, community-wide high-scores. This script
compares the value of the SCV High Score to the score from
the recently concluded game. If the score is higher, then High
Score is set to the score. The cloud icon indicates that the
variable High Score is an SCV.

ways, has driven the design of these toolkits. A learning sys-
tem, Papert argued, should offer learners immediate oppor-
tunities to use their new knowledge in ways that have “real
personal importance” to the learner [31] and as “a source of
personal power” [30]. This principle of design is described
as the “power principle” in constructionism. Because learners
have a diverse set of interests and passions, it is a corollary of
the power principle that designers should enable a wide range
of possible uses of knowledge—a principle that is described
as designing for “wide walls” (i.e. supporting a diverse range
of creative possibilities and outcomes) [37, 38].

Designers of constructionist learning systems have often used
the principle of wide walls to guide their design. Toward
this end, designers have introduced affordances that enable
learners to use new ideas in personally relevant ways. A
large body of qualitative and quantitative work in HCI, com-
puting education, and the learning sciences has shown that
many of these toolkits have been enormously successful in
engaging users and promoting learning. However, because
most constructionism-inspired toolkits already incorporate the
wide-walls principle, finding sufficient variation in “wideness”
remains a challenge. We know of no effort to formally or
quantitatively evaluate the theory that widening walls can pro-
mote participation, engagement, and learning.

In this paper, we offer an empirical test of the wide walls prin-
ciple by utilizing a natural experiment in the Scratch online
community. We estimate the effect of an exogenous change in
Scratch policy that granted a large number of Scratch users ac-
cess to more powerful Scratch data structure called a Scratch
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Cloud Variable (SCV, see Figure 1). This change effectively
widened the walls afforded to learners by Scratch variables.
We show that access to and use of these data structures caused
learners to increase their use of data structures in general—
including the less powerful forms they had access to previ-
ously. We observed 13,967 users who were affected by the
change and compared 45,809 projects that they created im-
mediately before and after. Our findings represent empirical
evidence in support of the wide walls principle and hold im-
portant lessons for designers of learning systems and creativity
support tools.

BACKGROUND
Constructivist theories of learning suggest that learning hap-
pens through active building of knowledge structures in the
mind rather than through passive transmission of knowledge
from the teacher to the student [33]. Building on construc-
tivism, Papert theorized that this process of building knowl-
edge structures “happens especially felicitously in a context
where the learner is consciously engaged in constructing a
public entity” [32]. This framework of learning is the corner-
stone of a larger body of theoretical and empirical research
that constitutes what is now known as constructionism, a body
of work spanning HCI, the learning sciences, and computing
education [14, 18, 17].

In his book Mindstorms: Children, Computers, and Powerful
Ideas, Seymour Papert put forth the argument that in order to
support learning, an educational tool should be “appropriable”
[30]. He went on to unpack appropriability into three princi-
ples. One of the principles was the “power principle” which
was defined as:

[An idea] must empower the learner to perform person-
ally meaningful projects that could not be done without
it [30].

Later, Papert’s student and collaborator Mitchel Resnick built
explicitly upon this idea to propose the principle of “wide
walls.” Resnick wrote:

We know that kids will become most engaged, and learn
the most, when they are working on projects that are
personally meaningful to them. But no single project
will be meaningful to all kids. So if we want to engage
all kids—from many different backgrounds, with many
different interests—we need to support a wide diversity
of pathways and projects [35].

Resnick’s principle of wide walls, which posits engagement
as a pathway to learning, has seen significant adoption by
communities that design for learning and creativity. One of
the most prominent implementations of the principle is in the
Scratch programming environment. The Scratch language
was designed to support many pathways including a wide
range of affordances [36]. As a result, Scratch users learn pro-
gramming by expressing themselves in diverse ways. Scratch
projects can include interactive animations, games, stories,
simulations, music videos, and more.

Beyond Scratch and constructionist learning systems, the prin-
ciple of wide walls has been widely adopted by designers of

creativity support tools [41]. It has been frequently cited as a
principle in, for example, the design of digital fabrication sys-
tems [2], 3D modelling software [5], web-based self-service
systems [12], musical interaction [13], CAD software [20],
systems for teaching statistics [23], and physical construction
kits [38].

Although deeply influential and widely cited, the wide walls
principle has never, to our knowledge, been posed as a hy-
pothesis to be tested empirically. In this paper, we do so by
breaking the principle into two distinct claims. First, we turn
to the primary claim embedded in the wide walls principle:
that widening walls increases engagement. Increased engage-
ment might occur by eliciting participation from a broader
range of potential users including individuals uninterested in
using a similar system or feature with a narrower design space.
It might also occur by encouraging learners already using a
a narrower system to use the system more frequently and in
a broader range of contexts. In both cases, increased engage-
ment would manifest as increased use of a system or feature.
Thus, we hypothesize that (H1) widening the design space
accessible by a feature will lead to more frequent use of that
feature.

The second claim of the wide walls principle is that greater en-
gagement from wider walls leads to increased learning. This
claim is rooted in the assumption that in order to take advan-
tage of the new possibilities afforded by wider walls, users
must engage with the original design space first. It also as-
sumes that through that process of engagement, users will
learn the underlying fundamental concepts that were neces-
sary in the first place to use features in the original design.
Based on this reasoning, we hypothesize that (H2) widening
the design space accessible by a feature will lead to more
frequent use of that feature within the context of the original
design space. Although other mechanisms may be possible,
we believe that the most plausible explanation for why the
introduction of wider walls would cause an increase in the
use of a feature within its original design space—a space that
users had identical access to before—is that increased engage-
ment caused by wider walls in turn increased learning about
underlying fundamental concepts.

EMPIRICAL SETTING

Scratch
Scratch is a graphical, block-based programming language
designed for children aged 8–15 [36]. Scratch programs are
created by dragging and dropping graphical “blocks” of code
and snapping them together to form “scripts,” as shown in
Figure 1. These scripts control the behavior of on-screen
graphical characters. Scratch is situated within an online com-
munity where Scratch users can share their projects, comment
on each others’ work, bookmark and show appreciation for
others’ projects, and follow each other’s user activity [25].1
Since its launch in 2007, the Scratch online community has
hosted more than 20 million registered users and more than
24 million shared projects.2

1https://scratch.mit.edu/ (https://perma.cc/U4AP-3FWF)
2https://scratch.mit.edu/statistics/ (https://perma.cc/4PBA-6MFJ)
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Scratch Cloud Variables
Scratch users store and retrieve data using scalar variables and
vector lists. More commonly used than lists, scalar variables
are used to store scores in games, user input, or other data use-
ful for a program. That said, variables are initialized each time
a Scratch project is reloaded, which means variables cannot
be used to store data that persists between visits to a Scratch
project. It also means that data stored in a variable by one user
is not visible to other users.

The SCV system was introduced as a new feature in the
Scratch programming language in 2013 [6]. An SCV extends
the standard scalar variable in Scratch by making it persistent
and shared.3 Persistent means that data in variables are not
reset each time the Scratch project is run. Score data can, for
example, be stored to create global leader-boards (as in in Fig-
ure 1). Shared means that that Scratch users running the same
project simultaneously will each be able to read and update
common data in an SCV. For example, user-input data can be
shared to create projects such as real-time chat-rooms.

The SCV system’s design was inspired directly by Papert’s
power principle and Resnick’s call for wider walls. In par-
ticular, the motivation behind SCVs was to enable everyone
to realize the “wide range of creative possibilities” enabled
by the ability to store and access data online [6]. One of the
two stated goals of the system was to “connect to [learners’]
personal interests” [6]. Additionally, to ensure alignment with
learners’ personal interests, the design of SCVs drew from
practices that were already prevalent in the Scratch online
community. For example, the design took direct inspiration
from the surveys children were designing with Scratch, which
repurposed the comments section of the community website
to collect response data. The SCV system sought to provide
wider walls and greater power by allowing variables to be used
in novel ways that were grounded in activities that learners in
the community were already attempting to engage in. Since
the public launch of SCVs in 2013, Scratch users have cre-
ated a wide variety of projects, such as global high-score lists
for games, surveys, collaborative art canvases, collaborative
clicking games, chatrooms, and multiplayer games [7].

The SCV system stores the value of the variables in a cen-
tral server and propagates changes to variable values to all
connected Scratch users in real-time. While programming, a
user can mark a variable as being a “Cloud Variable” through
a checkbox (see Figure 2a), effectively setting an orthogo-
nal property of the variable. Apart from the presence of
this orthogonal property, SCVs have a programming gram-
mar (get(), set(), increment()) that is identical to nor-
mal Scratch scalar variables (Figure 2b). Each SCV’s scope
is limited to the project it is used in—the value of the High
Score SCV in Figure 1 would be visible to any user accessing
that project, but not beyond (i.e., there is no between-project
variable sharing). If multiple users are accessing a project at
the same time, when one user causes a change to an SCV, all
other users see the value of that variable updated in real time.

3A Scratch Cloud List was also developed as a prototype, but was
never publicly deployed due to moderation concerns.

Because SCVs open up possibilities for powerful social af-
fordances, such as real-time chatrooms, moderators of the
Scratch website were concerned about potentially problem-
atic uses of the system. As a mitigation measure, the SCV
system was implemented so that only users with a certain
level of prior activity on the Scratch website would be able
to access and use them. This access control mechanism for
SCVs took advantage of an existing status system in Scratch.
Upon joining the community, every Scratch user is labeled
as a New Scratcher on their user profile page. After a cer-
tain amount of activity, measured in project creation, social
engagement, and other factors (the specifics have never been
publicly disclosed), a New Scratcher becomes a Scratcher
and is informed of this change through a notification on the
Scratch website.

Users with Scratcher status have access to certain privileges,
such as the ability to post in the forums at a high rate. This
mechanism was extended so that only users with Scratcher
status can access the SCV system. If a New Scratcher clicks
the “See Inside” button on a project using SCVs, they receive a
pop-up notification stating that SCVs are not usable by them;
any SCVs act as normal Scratch variables in that they are
neither persistent nor shared.

Natural Experiment
Our analysis seeks to provide causal evidence for the wide
walls theory. The most common way to provide causal ev-
idence in HCI research is through an experiment in which
random assignment is used to provide a group of users with
access to a new feature or affordance. User behavior is then
tracked and the effect of the feature is identified as the set of
differences in behavior between the users who received the
feature (the treatment group) and the users that did not (the
control group). In this paper, we take advantage of a natu-
ral experiment. Although access to the feature in question
in our natural experiment was not assigned randomly, it was
assigned in a way that was exogenous to users’ behavior and
can be considered “as if random.”

Our natural experiment occurred in the form of an unan-
nounced change to the unpublished criteria used to grant users
Scratcher status. This change, made on July 16, 2015, resulted
in many users of Scratch being given access to SCVs through
no action of their own. The change was made for reasons
entirely unrelated to SCV and its use. Prior to July 16, users
needed to have made 10 comments on the website to attain
Scratcher status. On July 16, the requirement to have left com-
ments was dropped. This change was made because website
moderators felt that this requirement was too restrictive. There
were many users who had met all the other thresholds for gain-
ing Scratcher status except for the comment count. When this
requirement was dropped, these users were all promoted to
Scratcher status. Thus, due to this change, a number of users
suddenly found themselves with Scratcher status—and hence,
access to SCV.

DATA AND MEASURES
Our unit of analysis is the Scratch project and our dataset
consists of projects shared by users who were affected by
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(a) Creating a Cloud variable (b) Cloud variable grammar (c) Using a Cloud variable

Figure 2. Scratch Cloud variables. (a) SCVs are specified when declaring a variable. (b, c) The grammar for using them is
identical to normal Scratch variables [7].

the change described above and who were active in a way
that would have let them take advantage of access to SCV.
Drawing from the database of all Scratch users, we used three
inclusion criteria. First, we considered only users who joined
the Scratch online community between January 1st 2015 and
July 1st 2015. We did not consider users before January 1st,
in order to limit the scope of our data collection and because
these users were relatively unlikely to be active. We did not
consider accounts created after July 1st because one of the
criteria for Scratcher status is that a user’s account must be
at least 2 weeks old. Second, we included only users who re-
ceived Scratcher status due to the change. Third, we included
only users who, after getting Scratcher status, had shared at
least one project that was not a modified version of another
users’ project. A further 52 were excluded due to errors in
our logging software that recorded incorrect information on
SCV use or because users were found to have attempted to
author projects with SCV via an upload workaround before
being promoted to Scratcher status.4 These inclusion criteria
resulted in a dataset that included 13,967 users.

Once we had identified these users, we collected data on
180,065 de novo projects these users had publicly shared.
We define de novo projects as those that were created from
a blank-slate editor and were not remixed from an existing
project. We focused on these works because we felt that the
presence of data structures in a remixed project might not
have indicated meaningful engagement or learning. For each
project, we collected a series of measures capturing quali-
ties of projects and their creators at the time they shared the
projects in question. These measures included the cumula-
tive number of projects (remixed and de novo) the learner
had shared at the time they shared the project in question
(Share Count). Although we excluded remixed projects in
general from our dataset, we included remixes in Share Count
because we sought to measure general experience. We also
included a dichotomous variable that indicated whether the
learner had received Scratcher status or not at the time that the
project in question was shared (Is Scratcher?), and a dichoto-
mous variable indicating whether the learner has used SCVs

4The attempts were ineffective because authentication tokens for
engaging in Cloud data operations were generated on the server-side.

in a previously shared de novo project (Used Cloud Data). If
the learner had used SCVs in this way, this variable was coded
1, otherwise 0. This variable was coded 1 even if the user sub-
sequently removed the SCV before sharing the project.

Our dependent variables sought to measure engagement and
learning. Measuring learning quantitatively is always chal-
lenging. This difficulty is exacerbated by the fact that Scratch
is an informal learning community with no fixed pathways
for participation, no specific lesson plans, and no standard-
ized forms of evaluation. We built on a method used in
previous work that mapped certain Scratch blocks to com-
putational thinking concepts (e.g., forever blocks map to
the concept of loops) [4, 8]. Because the SCV system is
focused on supporting engagement with and learning about
data [6], we developed a dichotomous dependent variable
(Uses Data Structures?) coded 1 if a project uses data struc-
tures and 0 otherwise. This measure includes any use of data
structures, including SCVs.

Given a positive causal relationship between the use of SCVs
and Uses Data Structures?, it is still difficult to disentangle
the degree to which SCVs were simply more novel or more
interesting to users from the degree they caused children to
learn about data structures more generally. If users engaged
with data structures more in the form of SCVs, this may have
been because SCVs’ wide walls encouraged them to learn and
to become more comfortable using data structures. However,
these users may also have understood data structures well be-
fore but were simply uninterested in using the narrow-walled
variables.

In H2, we hypothesized that users would be motivated to learn
about data structures in general. To test H2, we constructed
a version of our dataset by removing all instances of shared
projects using SCVs. Our second dependent variable, con-
structed the same way as the first, used this data. Because it
did not include any use of SCVs, this variable represents the
use of data structures within their original design space. We
called this variable Uses Data Structures?WOSCV (for “without
SCVs”). Although it is important to recognize that this vari-
able is not a direct measure of learning, a positive relationship
between using SCVs and Uses Data Structures?WOSCV means
that using SCVs caused users to also use non-SCV data struc-
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Variable Proportion
Is Scratcher? 0.47
Used Cloud Data? 0.01
Uses Data Structures? 0.34

Table 1. Proportions for dichotomous variables of interest
used in our analysis.

tures more frequently and in ways that we believe constitute
evidence in support of the theory that that wide walls promote
learning.

Our reasoning is as follows. First, many quantitative studies
of Scratch have measured learning as the presence of certain
blocks in projects [40, 26, 45, 24, 9, 27]—an approach that
has been validated by expert assessments [27]. Second, be-
cause all users in our sample had access to non-SCV variables
beforehand, an increase in non-SCV variable use is difficult to
explain except through increased familiarity with data struc-
tures. Using similar reasoning, Dasgupta et al. [8] interpreted
an increase in block use associated with previous exposure to
the same blocks in remixes as evidence of learning through
appropriation.

We also considered a subset of the projects in our dataset close
to the point when the criteria for Scratcher status was changed
(the rationale for the subsetting is described in more detail in
the next section). The subset used in our primary analysis
included a total of 49,982 projects created by 13,967 users—
4,173 of which were dropped because of missing data. Table
1 shows the proportions of all our dichotomous variables for
these projects. The only count variable used in our analysis,
Share Count, had a range of [1, 293], a median of 5, a mean
of 7.84, and a standard deviation of 9.4.

ANALYTIC PLAN
Our analysis drew heavily from a body of research in econo-
metrics that has used natural experiments to establish causal-
ity in observational data where researchers have traditionally
been limited to making claims about correlation [3, 28]. Re-
cently HCI researchers have begun analyzing natural experi-
ments as well [29]. Borrowing terminology from randomized
controlled experiments in medicine, analyses of natural ex-
periments typically describe their key independent variable
as “the treatment.” In our case, the treatment is having used
SCVs (Used Cloud Variable?).

Although a simple correlation between Used Cloud Variable?
and Uses Data Structures? might show projects by that
Scratchers who used SCV also used data structures more fre-
quently, evidence of this relationship does not necessarily im-
ply causation. A positive correlation might simply be due
to SCV users being more motivated, more curious, or more
committed to exploring Scratch’s functionality. Natural exper-
iments take advantage of changes that, although not random,
place individuals into a treatment condition (i.e. individuals
using SCVs) in a way that is “as if random.”

In our case, the change in criteria for Scratcher status was such
a change. Because Scratch moderators’ decision to change

the criteria for Scratcher status was sudden and unannounced,
we believe that projects created by these users immediately
before and after the policy change should be expected to be
equal in terms of any quality we might choose to measure—
with the exception of changes caused by the policy change
itself. In treating the policy change as a natural experiment,
we are assuming that if they had not been given access to
SCVs due to the policy change, the users in our sample would
have been equally likely to use data structures in their projects
immediately before and after the change. If this is true, we
can assume that any difference was caused by the change in
policy.

Like many analyses of natural experiments, our analytic strat-
egy consisted of two steps. First, in what is called an “intent-
to-treat” (ITT) analysis, we used the dataset of users who
gained access to SCV due to the policy change and compared
the likelihood that projects shared immediately before and im-
mediately after used data structures (Uses Data Structures?).
This analysis is referred to as “intent-to-treat” because, al-
though users with access to SCVs could use the new system,
most never did. In our ITT analysis, our main independent
variable was a dummy variable coded as 1 if an individual had
Scratcher status and 0 otherwise.

Second, in what is called a “treatment-on-the-treated” (TOTT)
estimate, we sought to estimate the effect of using SCV. It is
possible to calculate an unbiased parameter estimate of the
effect of taking up a treatment using a mathematical method
known as two-stage least-squares (2SLS).5 TOTT estimates
using 2SLS measure what is called a “local average treatment
effect” (LATE) [28]. In our case, this means that our TOTT
estimate is not an estimate of the effect of using SCVs among
all Scratch users as one might assume. Instead, it is the es-
timate of the effect of using SCVs among users who did so
because they were given access through the policy change.

The following example from education policy research illus-
trates the intuition behind ITT and TOTT estimates as well as
some of its limitations. Several studies have shown that pri-
vate school students have higher levels of achievement than
public school students. This does not mean that private school-
ing causes higher achievement, because private and public
school attendees are also different in many observed and likely
unobserved ways (e.g., they are wealthier and their parents
might be more committed to their education). One series of
studies took advantage of a natural experiment arising from
a private school voucher lottery in New York City [15, 21].
Because the lottery was random, one would expect winners
and losers to achieve equally (on average) before the lottery.

Of course, some lottery losers chose to send their kids to pri-
vate schools anyway, and some winners sent their kinds to
public school. An ITT estimate of attending private school
captures the simple effect of winning the voucher lottery. If
many lottery winners did not use their vouchers, we would
expect these ITT estimates to be much smaller than the ef-
fect of actually attending private school. A TOTT estimate

5Although a full explanation of 2SLS is outside the scope of this
paper, the topic is discussed in depth by several excellent textbooks
[11, 3, 28].
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captures the effect of attending private school conditional on
having won the lottery (i.e., the TOTT estimate is a LATE
limited in scope to the group of students who entered the lot-
tery). Although the effect is causal, the children who entered
private school because they won the voucher lottery are likely
different from the general population in many ways.

There are a series of important issues to consider when con-
structing ITT and TOTT estimates from natural experiments.
In our case, one issue pertains to the possibility of a general
upward or downward trend in the probability that users will
use data structures as they gain experience. For example, as
Scratch users share projects, they may become more likely to
use data structures on average. As a result, a positive shift in
our dependent variables might then reflect this general trend
instead of a causal effect of users being granted access to
SCVs. We controlled for the experience of the Scratch user
in our model in terms of the number of previously shared
projects (Share Count). As Share Count is highly skewed, we
applied a started log transformation (i.e., log(x+ 1)) to the
variable to better satisfy the parametric assumptions of our
model. We chose to use a “bandwidth” of 4 projects, (i.e., a
maximum of two projects on each side of the transition point).

This approach is described as a regression discontinuity de-
sign (RDD) in econometrics [3, 28], and the technique has
been used in HCI research as well [22]. Individuals in our
sample gained Scratcher status at different points along our
trend variable Share Count. Because the relationship be-
tween log(Share Count) and Uses Data Structure? might not
be linear, we fitted a series of polynomial specifications of
log(Share Count) using likelihood ratio tests to determine if
increases in model goodness of fit justified the more complex
specifications of the variables. These tests suggested that the
model with a cubic term fit best. To address estimation is-
sues related to collinearity in our polynomial terms, we used
orthogonal polynomials in our models, as returned by R’s
poly() function.

Because a single user in our dataset will share more than one
project, users are measured repeatedly in our dataset. To ad-
dress this concern, we used a multi-level model [42] with a
random intercept term for users. Because the dependent vari-
ables in both our ITT and TOTT models are dichotomous, our
models are logistic regression models. The formula for our
first logistic regression model (M1) that estimates the causal
effect of a user being a Scratcher on the probability of using
data structures (i.e., our ITT estimate) is:

log
(

p̂(Uses Data Structure?)
1− p̂(Uses Data Structure?)

)
= β0 +β1Is Scratcher?+

β2 log(Share Count)+β3 log(Share Count)2+

β4 log(Share Count)3 +[u+ ε]

As indicated earlier, our TOTT estimates were drawn from
2SLS regressions models, which require fitting regression
models in—appropriately enough—two stages. In the first
stage, a regression model was fitted to the hypothesized
relationship between the potentially endogenous question

predictor Used Cloud Data? and the intent-to-treat indicator
Is Scratcher?. Thus, in our case, the first stage model (M2a)
is represented by the following equation:

log
(

p̂(Used Cloud Data?)
1− p̂(Used Cloud Data?)

)
= β0 +β1Is Scratcher?

+β2 log(Share Count)+β3 log(Share Count)2

+β4 log(Share Count)3 +[u+ ε]

Next, predicted values of Used Cloud Data? were calculated
using this model. In the second stage, we used the pre-
dicted value from the first stage (denoted ̂Used Cloud Data?)
instead of the potentially endogenous observed values of
Used Cloud Data?. Thus the model (M2b) for the second
stage becomes:

log
(

p̂(Uses Data Structure?)
1− p̂(Uses Data Structure?)

)
= β0 +β1 ̂Used Cloud Data?

+β2 log(Share Count)+β3 log(Share Count)2

+β4 log(Share Count)3 +[u+ ε]

The result of fitting this model was our TOTT estimate.

The approach described above was the same for testing
both H1 and H2—the only difference being that we used
Uses Data Structures?WOSCV as a dependent variable for test-
ing H2 instead of Uses Data Structures?, which was used for
H1.

RESULTS
As a first step, we simply compared all projects shared by
users immediately before gaining Scratcher status to all the
projects shared immediately after, in terms of the propor-
tion of each that were coded 1 for Uses Data Structure? (H1)
and for Uses Data Structures?WOSCV (H2). The results of a
2-sample test for equality of proportions on these data are
shown in Table 2. For both H1 and H2, we find that there is
a statistically significant difference between the proportion of
projects with data structures before and after learners gained
Scratcher status (χ2 = 28.047 and χ2 = 8.027 respectively).
As explained above, because this difference might be a func-
tion of the increase in experience of learners (i.e., reflecting a
general upward trend), we proceeded to fitting our regression
models.

First, we considered results from our ITT models. ITT model
fits for both H1 and H2 are provided in Table 3a. For H1, the
parameter estimate for Is Scratcher? is positive (β = 0.131,
p < 0.001). The estimate is relatively small, suggesting that
the odds of a Scratch user with Scratcher status sharing a

Hypothesis Diff. in prop. χ2 p-value
H1 0.023 28.047 < 0.001
H2 0.012 8.027 0.005

Table 2. Results of tests estimating the difference in propor-
tions of projects with data structures between learners before
and after they gained Scratcher status. Tests were conducted
with datasets for both H1 and H2.
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ITT
H1 H2

Is Scratcher? 0.131∗∗∗ 0.080∗∗∗
(0.0001) (0.0001)

log(Share Count) −1.155 −1.166
(1.980) (3.061)

log(Share Count)2 −15.084∗∗∗ −15.282∗∗∗
(2.447) (3.084)

log(Share Count)3 5.057∗∗ 6.259
(1.720) (3.365)

Constant −0.790∗∗∗ −0.787∗∗∗
(0.0001) (0.0001)

Observations 45,809 45,419
Log Likelihood -28,650.290 -28,359.030
Akaike Inf. Crit. 57,312.590 56,730.070
Bayesian Inf. Crit. 57,364.980 56,782.410
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

(a) Results of fitting model M1 (ITT)

2SLS
H1 H2

̂Used Cloud Data? 2.248∗∗∗ 1.095∗∗∗
(0.173) (0.154)

log(Share Count) 2.078 0.906
(2.024) (2.483)

log(Share Count)2 −21.918∗∗∗ −20.192∗∗∗
(1.706) (2.268)

log(Share Count)3 6.949∗∗∗ 7.637∗∗∗
(1.760) (2.302)

Constant −0.744∗∗∗ −0.757∗∗∗
(0.017) (0.017)

Observations 45,809 45,419
Log Likelihood -28,567.400 -28,336.810
Akaike Inf. Crit. 57,146.800 56,685.620
Bayesian Inf. Crit. 57,199.200 56,737.960
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

(b) Results of fitting model M2b (stage 2 of 2SLS)

Table 3. Results of fitting mixed-effects logistics regression models with a random intercept term for users.

project with data structures were 1.14 times that for a user
who has shared the same number of projects without Scratcher
status. Of course, this represents the average effect for users
who have Scratcher status. Small estimated ITT effects are
typical for treatments with low uptake, like ours. For H2,
we saw a similar result: the ITT estimate for Is Scratcher?,
though lower than in H1, was also positive (β = 0.08, p <
0.001). We estimated that for a learner with Scratcher status,
the odds of sharing a project with non-SCV data structures is
1.08 times the odds for a similar user without status.

To estimate the local effect of SCVs on users who used the
system due to the change, we turned to our 2SLS models.
Estimates from these models are shown in Table 3b. For both
models, we obtained a positive estimate that was much larger
than our ITT estimates (β = 2.248, p < 0.001 for H1 and
β = 1.095, p < 0.001 for H2). For H1, we find that the odds
of sharing a project with data structures by a learner who
had used SCVs was 9.47 times those of a learner who had not
used them. For H2, we found that the odds of sharing a project
with data structures (excluding projects that use SCVs) is 2.99
times those of a similar learner who had not used SCVs.

To aid in interpreting these results, Figure 3 shows the model-
predicted probabilities that a project will include data struc-
tures for a series of prototypical Scratch projects. The two
panels constituting the left half of the figure visualize our
ITT estimates and show relatively small differences between
projects’ likelihood of using data structures immediately be-
fore and after the change. The first panel shows that a pro-
totypical project by a Scratch user without Scratcher status
who has shared 5 projects (the median value of Share Count)
had a probability of 0.32 of using data structures, while the
probability for a project by an otherwise equivalent user with
Scratcher status was 0.35. For projects which did not use
SCVs, the corresponding probabilities were 0.33 and 0.34, re-

spectively, as shown in the second panel. Because most users
did not use SCVs, this small difference is not particularly sur-
prising. While small, the estimates are statistically significant
and offer evidence of a causal effect.

The right half of Figure 3 visualizes the results from our 2SLS
models and shows our TOTT estimates. For a Scratch user
who had 5 shared projects and had not used SCVs, the proba-
bility of their project including data structures was 0.34; for a
user who had used SCVs, the probability was 0.83. This large
difference is not entirely surprising, as the observed projects
included SCV use itself in the dependent variable (H1). Ex-
cluding projects with SCVs (H2), our estimate of the prob-
ability of a project including data structures for a user who
had not used SCVs was 0.33; for a user who had used SCVs,
the corresponding probability was 0.6. These results reflect
large and meaningful changes and support of a causal effect
in terms of both of our hypotheses.

THREATS TO VALIDITY
The validity of our findings may be affected by a number of
threats and limitations. A first threat is due to the fact that only
3.7 percent of the users in our sample took up the treatment
within our bandwidth of 4 projects. We do not believe that
this reflects a methodological problem. Econometricists have
established that, while it is better to have a larger difference, as
long as the functions on the two sides of a cut-off or transition
point are different, the analysis can be valid [3].

Another series of methodological threats stems from the pos-
sibility that the change at the center of our analysis might not
have been exogenously related to our outcomes. If the change
was not exogenous, it compromises our ability to draw causal
conclusions. In a traditional experiment, this might happen
if individuals were able to move between treatment or con-
trol groups. In our case, a similar issue might have arisen
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Figure 3. Model-predicted probabilities of sharing a project
with data structures. The values of Share Count are held at 5
throughout.

if the users knew that the change was coming, because they
might then have shifted their activity and used data blocks
differently beforehand. Because the change was completely
unannounced, we are reasonably confident that this did not
occur.

There is a series of specific threats to a researcher’s ability to
draw causal inference in RDD studies and a set of associated
robustness checks [16]. For example, researchers often fit al-
ternative regression models with the cut-off or transition point
shifted to another location (a “placebo” cut-off point) [16]. In
a placebo test, the fitted regression should have no statistically
significant estimate for the alternative treatment variable. For
our analysis, we conducted a placebo test by shifting the cut-
off point by two projects to the right of the actual cut-off. We
could not reject the null hypothesis that there was no effect of
the placebo cutoff (p = 0.75).

Another form of placebo test involves replacing the dependent
variable with an outcome variable that theory or substantive
knowledge suggests should not be affected by the change. In
our case, this test was more difficult because access to SCVs
might have encouraged users to create projects that were dif-
ferent in ways that went beyond simply including data struc-
tures. For example, although the SCV system was not de-
signed to promote the exploration of loops or events, the use
of data structures might have created the need in some users
to explore these concepts as well. Our inability to conduct a
placebo test of this kind means that we cannot address this
threat as fully as we might like.
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Figure 4. Estimates for Is Scratcher? from fitting M1, using
the data for H1 across a range of bandwidths. The estimate
remains positive and statistically significant over a range of
bandwidths.

Another important methodological issue to consider in the
context of an RDD study is the choice of bandwidth (i.e., the
number of projects around the transition point). The challenge
in choosing an appropriate bandwidth is to achieve a balance
between having a large enough sample and minimizing the ef-
fect of factors far away from and unrelated to the change. To
address this threat, we conducted our analyses with smaller
and larger bandwidths and found that the positive estimate
for Is Scratcher? remained. Figure 4 shows the estimates for
Is Scratcher? from Model M1 across a range of bandwidths.
Although estimates were consistent across large bandwidths,
our placebo test failed with some larger bandwidths. This is
not entirely unexpected as our results with these wider band-
width models might have been influenced by a variety of fac-
tors as we included more projects further from the transition
point. Nevertheless, this represents a potential threat to the
validity of our results.

There is also a series of more conceptual threats to validity.
Though we treat the SCV system as widening walls, it ulti-
mately represents a very specific vision of what wide walls
could be. SCVs introduce a wider range of opportunities for
those who are already relatively experienced with coding in
Scratch. It is possible to imagine other forms of wide walls
that speak to very specific interests and passions that lie out-
side of traditional programming. It is entirely possible that the
dynamics around the adoption and use of such hypothetical
types of wider walls could be very different from what we
found in our study.

Finally, we recognize that all quantitative measures of learning
are limited. For one, measures such as ours can only observe
outcomes of learning. In our analysis, we only detected the
presence of data structures; we did not know the purpose of
those data structures or even if they were effectively unused
in the projects that we observed. We believe that this repre-
sents a significant limitation of our approach. We hope that
other researchers will engage with, critique, and build on our
methods.
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DISCUSSION
The primary contribution of our work is its finding support
for the theory that wide walls lead to increased engagement
and learning. We found that providing more creative possibil-
ities and affordances to learners caused them to engage more
with underlying concepts. We also found that this increased
engagement was not restricted to the new possibilities, but
also applied to the possibilities that were available earlier. As
children took advantage of SCVs’ new possibilities, they en-
gaged more with the “vanilla” forms of data structures as well.
We believe that these results represent causal evidence for
Papert’s power principle and Resnick’s concept of wide walls.

Our work also makes several methodological contributions.
These contributions lie in our use of a natural experiment to
establish a causal relationship using observational data. Al-
though new to HCI, we believe that these techniques can find
application in many online platforms and learning systems. It
is not uncommon for policies governing who gets access to
features to change in ways similar to the case we studied. In
such cases, the strategy that our analysis followed could be
utilized to measure the causal effect of those changes.

Despite our finding evidence in support of the wide walls
theory, it is worth keeping in mind that only a small proportion
of learners in our sample used SCVs. A possible reason for
this—and a challenge for designers attempting to widen walls
in an informal environment—is the difficulty that learners face
in understanding a large number of functional possibilities
arising out of a comparatively simple structure. This may
represent an important limitation of the wide walls approach.
Although the structural model of the SCV system is simple
and consistent (i.e., there are only a limited number of possible
operations on SCVs, and these operations are independent of
any specific use), the functional model covers a vast number
of uses and is dependent on users’ intent. For example, SCVs
can be used to keep persistent count of votes or users, to keep
track of high scores, to store user preferences, to implement a
message exchange system, and so on.

DiSessa [10] argued that one needs a “repertoire” of func-
tional uses and that building such a repertoire may require
“specific tutoring.” As an informal learning environment,
Scratch offers very little “specific tutoring.” When walls are
widened, it may also be necessary for designers to articulate
and design specific plans to help learners understand how
to make use of the new possibilities. Which strategies will
work best for this (e.g., tutorials, sample projects, commu-
nity events focused on the new possibilities) remains an open
question.

Echoes of this conundrum can be heard within existing dis-
course around wide walls. For example, Resnick and Silver-
man suggest that there may be a potential tension between
designing for wide walls and designing for low floors (i.e., a
low barrier to entry for novice learners):

The design challenge is to develop features that are spe-
cific enough so that kids can quickly understand how to
use them (low floor), but general enough so that kids can
continue to find new ways to use them (wide walls) [38].

Thus, though SCVs widened the walls for users of variables
in Scratch, it may have, in effect, raised the floor for learners
as well. As Resnick and Silverman point out, balancing out
the effects associated with the raised floor remains an open
design challenge.

CONCLUSION
We believe that our work represents the first large-scale quan-
titative test of the “wide walls” design principle. These results
are excellent news for designers who apply this popular and
influential principle, as well as for proponents of construction-
ism. Although not without limitations or caveats, we hope
that our estimates of a positive causal effect of wider walls
will encourage more designers of educational technology and
creativity support tools to adopt the principle in their practice.
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