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Many Destinations, Many Pathways: AQuantitative Analysis
of Legitimate Peripheral Participation in Scratch
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Although informal online learning communities have proliferated over the last two decades, a fundamental
question remains: What are the users of these communities expected to learn? Guided by the work of Etienne
Wenger on communities of practice, we identify three distinct types of learning goals common to online
informal learning communities: the development of domain skills, the development of identity as a community
member, and the development of community-specific values and practices. Given these goals, what is the best
way to support learning? Drawing from previous research in social computing, we ask how different types
of legitimate peripheral participation by newcomers—contribution to core tasks, engagement with practice
proxies, social bonding, and feedback exchange—may be associated with these three learning goals. Using
data from the Scratch online community, we conduct a quantitative analysis to explore these questions. Our
study contributes both theoretical insights and empirical evidence on how different types of learning occur in
informal online environments.

CCS Concepts: • Human-centered computing → Empirical studies in collaborative and social com-
puting.

Additional Key Words and Phrases: online community, informal learning, newcomer participation

ACM Reference Format:
Ruijia Cheng and Benjamin Mako Hill. 2022. Many Destinations, Many Pathways: A Quantitative Analysis
of Legitimate Peripheral Participation in Scratch. Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 381
(November 2022), 26 pages. https://doi.org/10.1145/3555106

1 INTRODUCTION
In the last two decades, we have witnessed the proliferation of online communities that seek to
promote informal learning through unstructured activities and interactions with others. For exam-
ple, social computing scholars have documented the way users work together to learn creative and
technical animation skills in communities such as NewGrounds [34], writing and web development
skills in fan communities such as FanFiction.net and Archive of Our Own (AO3) [8, 15], and program-
ming skills in creative coding communities such as Scratch [45]. These communities do not offer
fixed lesson plans and offer little in the way of formal instruction. They are interest-driven, open to
all, and free to join. Members learn at their own pace while pursuing their personal passions.
Skeptics of informal learning have pointed out that many users of such systems spend a sub-

stantial portion of their time on these websites commenting and socializing. How effective can a
programming community be in supporting learning if its users constantly chat with each other
while spending relatively little time writing or reading code? Proponents have responded that
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socialization promotes continued participation, a prerequisite to learning in informal settings
where users are always at risk of not returning, and allows a collaborative process of learning and
mentoring [8, 13, 49]. Others have suggested that learning to socialize is an important learning
outcome itself [5, 14, 29]. An effective coding community could help its members develop important
social skills in addition to technical ones [4].

There remains a deep disagreement within the social computing community about how learning
communities should be designed tomaximize learning.We believe that resolving these conversations
is difficult because researchers often do not fully answer the following questions: What do we expect
members of informal learning communities to learn? What types of behavior should designers
encourage and support for each learning goal?
Our work begins to explore answers to these questions. Guided by Lave and Wenger’s [33]

influential work on communities of practice (CoPs) and Wenger et al.’s [53] more recent work on
types of learning in CoPs, we describe three distinct categories of learning outcomes common to
informal online learning communities: development of domain skills, development of community
identity, and development of community practices. Using these three outcomes, we explore how
different types of legitimate peripheral participation (LPP) by newcomers—contribution to core
tasks, engagement with practice proxies, social bonding, and feedback exchange—are associated
with these different learning outcomes using data from the Scratch online community [25]. We find
that different types of participation are associated with learning outcomes differently. For example,
making original projects as a newcomer is a good predictor of learning new computational concepts
in the long term, while it is negatively associated with the formation of community identity and
development of community practices.

Our paper makes several contributions. First, we believe that ours is the first study to provide a
quantitative analysis of LPP and learning outcomes in a CoP. In doing so, our work suggests that
users’ early participation in an online community is associated with long-term learning outcomes—
but the successful types of participation associated with different types of learning outcomes will
differ. Second, we make an empirical contribution by analyzing 3 years of longitudinal data from
Scratch. We believe that our work provides a template for future work that seeks to quantitatively
investigate CoP theory in social computing in the context of a computational learning community.
Finally, our work informs the design of new systems by pointing out potential ways to facilitate
different newcomer participation patterns supporting a range of learning outcomes.

2 BACKGROUND
2.1 Communities of practice
Over the last three decades, Jean Lave and EtienneWenger’s ideas around CoP have been among the
most important theories used by social computing scholars to understand how learning happens in
communities. The term community of practice has been widely used in social computing scholarship
to describe groups of people learning from each other while working toward a common interest or
goal [e.g., 19, 31, 36, 50]. First introduced by Lave and Wenger [33] in 1991, CoP theory is grounded
in ethnographic observation of apprenticeship relationships in communities of Liberian tailors,
Mayan midwives, US Navy quartermasters, nondrinking alcoholics, and US supermarket meat
cutters.
Learning in CoPs is described as occurring through LPP, the phenomenon through which

newcomers begin to participate in a group by helping out with tasks that are easy and low-risk
but still valuable and important. For example, a new midwife may begin by boiling water and
cleaning scissors for other midwives. Through observing more experienced members performing
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more complex and higher-stake tasks—and by practicing themselves in various ways—novices
move from the periphery to more central roles.

2.2 Applications of CoP theory in social computing research
Although created to explain learning through traditional apprenticeships offline, the HCI and
CSCW communities have embraced the CoP framework. Today, it is one of the most influential
and highly cited theories related to learning in social computing. CoP has been widely adopted
by social computing scholars because it is a good match for informal and individualized forms of
learning that occur in many online settings.

Despite being cited hundreds of times in social computing scholarship—and tens of thousands of
times in general—there have been very few attempts to explore or test CoP theory quantitatively.
We are not aware of any such attempts in social computing scholarship. Furthermore, the work of
applying CoPs to online settings, where groups are often extremely porous and diffuse, has required
new theoretical work and argumentation. For example, Gruzd et al. [20] have argued that a single
social media user can form a personal or “imaginary” CoP with other users in their network. Using
a similar line of thinking, data scientists on Twitter who engage with the hashtag “#TidyTuesday”
have been theorized to constitute a CoP because they share context, common interests, and a
process of collaborative knowledge advancement and because they ask questions and interact with
more experienced users [50].
A wide range of other examples of online CoPs that have been identified and studied in social

computing includes design professionals on online critique platforms [31, 36], a Facebook group of
Airbnb hosts who learn about new features and hosting strategies from each other [26], and fan
fiction authors who gather online to develop and maintain the fan fiction website Archive of Our
Own (AO3) [15]. In these examples and others, online CoPs are generally described as occurring in
affinity spaces where members with similar interests and identities contribute to a shared collection
of knowledge in a distributed manner [18]. An example of an online affinity space that is frequently
described as a CoP is the Scratch online community—the empirical context of our study [39].

2.3 Types of learning in CoPs
One limitation in Lave and Wenger’s initial account is that it is vague about what exactly is being
learned in a given CoP. This is an important omission because CoP members typically learn a range
of different things as they become more experienced. For example, becoming a Mayan midwife in
the Yucatan Peninsula involves much more than learning technical midwifery skills. It also involves
learning about the Mayan midwifery community and the specific norms and values that shape
midwifery in the Yucatan. In later work, Wenger et al. [53] attempted to address this omission by
identifying three types of learning in CoPs: learning about domain, community, and practice. We
present each type of learning in the following paragraphs.
First, learning about a domain refers to the acquisition of knowledge and skills necessary for a

person to carry out the core tasks at the heart of a CoP. Many scholars of online communities are
interested in how communities use LPP to support learning about some domain of knowledge and
domain learning is often assumed to be the only learning goal in a CoP. For midwives, learning
about a domain involves gaining knowledge related to successfully delivering infants. Depending
on the community, domain knowledge may involve skills related to computer programming [45, 51],
fan fiction writing [8], encyclopedia article editing [22], and so on. In the specific context of com-
putational learning communities such as Scratch, domain learning means learning computational
concepts and related programming skills [45].

The second type of learning involves the development of identity as a member of the community.
This involves developing relationships, affinities, and a sense of belonging. As learners are accepted
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by older members of the community, they gradually form an identity as a member of the community.
The development of these relationships and affinities would play out similarly in various settings
and typically involves the knowledge of other community members and the development of a sense
of membership and commitment to the community [38].
Third and finally, learning a practice means assimilating “cultural artifacts, norms, and values”

developed in the community over time [1]. By moving from peripheral to central forms of par-
ticipation, learners develop by adjusting their social, work, and contribution style to match what
is accepted and appreciated by community members. The specific reasons why one would be
seen as accepted and appreciated in a CoP are very community-specific. However, indicators of
practice development will typically involve expressions of appreciation and respect from others.
For example, for midwives, it might involve the authority to lead or manage other midwives [33].
On Fanfiction.net, signs of practice development may involve high ratings and positive comments
[8]. On Scratch, it might involve “loves” (i.e., likes) given by other users [3].

2.4 How does LPP promote different types of learning in CoPs?
Just as CoPs promote multiple types of learning, they also allow multiple types of participation.
Although many studies of online activity reduce behavior to unidimensional concepts like “engage-
ment,” there are many types of LPP that occur in CoPs. To identify different types of LPP relevant to
online communities, we conducted a detailed search of the literature on CoPs in CSCW and social
computing venues. We did not find any previous attempt to enumerate or classify different types of
LPP in social computing. However, through our reading of the literature, we were able to identify
four distinct types of LPP that are frequently discussed: contribution to core tasks, engagement
with practice proxies (an important type of activity in CoP theory, which we will explain in detail
below), the formation of social bonds, and feedback exchange. We do not claim that these four types
are strictly mutually exclusive; nor do we claim that they form a comprehensive list. We merely
offer them as examples of four different types of participation that capture some of the diversity of
LPP. We discuss the limitations of our work based on our necessarily arbitrary identification of the
types of LPP in §8.
The first type of LPP we identified, contribution to core tasks, refers to the work of newcomers

toward a community’s explicit goal. Examples of contributions to core tasks include editing articles
on Wikipedia, submitting code in an open source software project, and creating programming
projects on Scratch. The second type of LPP is engagement with practice proxies. The term practice
proxies refers to activities that allow newcomers to observe and participate in the socially salient
aspects of others’ unfolding work practices [40]. For example, in CoPs for online citizen science,
new users can learn to contribute by engaging with project documentation left by others [40].
The third type of LPP is social bonding. In Lave and Wenger’s [33] study of an alcoholics social
group, the most important activities involved members forming interpersonal bonds and becoming
friends. In online CoPs, social bonding is often enabled by social media features such as friending
and following. The fourth form of LPP is participation in feedback exchange. Feedback exchange
in online CoPs often takes place through public commenting on artifacts shared by community
members.
Because participants in online groups learn different types of things, it stands to reason that

the most effective forms of LPP for the promotion of learning might vary depending on the type
of learning. In other words, not all forms of peripheral participation will be equally likely to
help a newcomer develop in terms of every desirable learning outcome. For example, peripheral
participation in socializing activities might help newcomers build knowledge about the community,
but might not contribute to their knowledge of domain skills. Consequently, we might not expect
that socializing in a coding-focused CoP would necessarily make one a better programmer. Similarly,
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Fig. 1. Our research examines which type of newcomers’ LPP is associated with which learning outcome in
CoP.

contribution to the core task of programming may not help to build social knowledge about the
community and its members. Indeed, given limited time and resources, support for one learning
outcome might come at the expense of others. For example, a study of the Scratch community
showed that socialization amongmembers in the comment section of Scratch projects can sometimes
drive discussion away from programming related topics [49].

Inspired by the original CoP literature that focused primarily on the experience of newcomers and
their progression in the community [33], we specifically focus on the participation of newcomers
and their long-term learning outcomes. Figure 1 includes the four types of newcomer LPP we have
described on the left and Wenger et al.’s [53] three types of learning in CoPs on the right. We
draw 12 left-to-right arrows that represent all possible direct pathways between our four types of
LPP and Wenger et al.’s [53] three learning outcomes. In the following sections, we explain our
research questions (R1 to R3) and related work on how different types of LPP contribute to the
three learning outcomes.

2.4.1 Domain. The social computing literature suggests that domain knowledge learning can be
influenced by different types of LPP, although the specific effects remain unclear. For example,
many studies suggest that by contributing to core tasks, newcomers can learn technical details and
gain confidence. For example, new Wikipedia editors often start by making edits on topics that
they are familiar with [6]. In the context of computational learning, novice programmers involved
in open source projects often begin by reporting bugs and requesting features [51] and fanfiction
authors learning to program contribute to the development of a fanfiction website by engineering
very small features [15]. However, some also argue that contributing to core tasks can be stressful
and overwhelming to newcomers, especially for those without much previous exposure to the
domain.
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Alternatively, newcomers can learn domain knowledge and skills with the help of practice proxies.
For example, social media functionality that allows community members to view and download
artifacts shared by others has been described as a method by which practice proxies can build
domain knowledge among new designers [36]. Similarly, new Wikipedia editors rely on practice
proxies by reading existing pages and page histories before making their initial contributions to the
encyclopedia as a way of learning where, when, and how to edit [6]. In the context of computational
learning, the evidence of the relationship between engagement with practice proxies and domain
learning is mixed. While research shows that Scratch users who create remixes of others’ projects (a
common practice proxy in computational learning) will learn more computational concepts as they
continue to participate in the community [12], they tend to display less innovation and originality
in the programs they make [24].

Furthermore, while many computational learning platforms support socialization and feedback
exchange, how these activities contribute to computational learning remains unclear. To explore
how different types of LPP contribute to domain knowledge learning in CoPs, we ask the research
question R1: How do different types of LPP affect domain knowledge learning?

2.4.2 Community. Qualitative evidence has shown that engagement with practice proxies, forming
social bonds, and participating in feedback exchange can help newcomers develop an identity as a
member of their community. Engagement with practice proxies can not only show newcomers how
to master domain skills, but also provide newcomers with a sense of belonging. Lave and Wenger
[33] describe how novice meat cutters in a US supermarket who lacked practice proxies had a low
rate of interaction with more experienced butchers and did not feel like they were participating in
a community to learn skills. In the context of Scratch, many users engage in remixing with the sole
purpose of broadcasting each other’s work and being part of a social group [24]. In the online CoP
of R data scientists on Twitter, a large portion of newcomers join to build connections with others
in the R community [50]. Furthermore, social computing research has shown that newcomers with
connections to others tend to remain active in the community longer [32].
Previous research has indicated that newcomers’ engagement in feedback exchange can also

help users develop as community members. Feedback exchange in online CoPs has been described
as a form of distributed mentoring in which mentoring relationships are not bounded by time,
geographic space, and differences in expertise [8]. Similarly, an experiment on reader engagement
on Wikipedia has shown that newcomers showed higher long-term participation rates when asked
to provide feedback on articles [22]. To obtain quantitative evidence for how different types of LPP
support members to develop community identity, we explore the research question R2: How do
different types of LPP affect the development of community identity?

2.4.3 Practice. Few papers in the social computing literature have directly studied how practice in
a community—i.e., being able to understand and reproduce what is valued by CoP members—can
be supported. Some qualitative studies have implied that feedback exchange could help members
of online CoPs learn community practices. For example, in forums dedicated to online dating, users
offer each other comments and advice on self-presentation to understand how others use dating
sites and what behaviors are considered appropriate [37]. Similarly, new Airbnb hosts critique
each other’s drafts of hosting descriptions to recognize effective hosting styles [26] and young
UX enthusiasts comment on others’ posts to help each other learn how to make an appropriate
networking message in the community [31]. To further explore if and how different types of LPP
can help learners learn community practices differently, we ask the research question R3: How do
different types of LPP affect the learning of community-specific values and practices?
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(a) Example of Scratch code. (b) Social features and activities around the project.

Fig. 2. Historical interfaces of Scratch and social features at the time when data used in our analysis were
collected. Images obtained from Hill and Monroy-Hernández [25].

3 EMPIRICAL SETTING: SCRATCH COMMUNITY
We conducted our study using data from the Scratch community. Scratch was designed to support
young people in learning to program using the Scratch programming language—a visual block-
based language designed for children to learn basic programming [45, 46]. Scratch was designed
based on constructionist learning principles [42, 44]. Programming primitives are represented by
visual blocks that control the behavior of graphical objects on the screen called sprites. As shown
in Figure 2a, users can drag and drop blocks together to build programs.
Although the Scratch programming language was designed for children to use on their own

computers, the language has been integrated into a vibrant online community since 2007. Users
in this community can view others’ project and share their programming projects with others
[39].1 As of July 2021, the Scratch online community has over 73 million registered users and over
79 million shared projects that span a diverse range of genres and themes. The large majority of
Scratch users are between the ages of 8 and 16 years and the average age for new contributors is
approximately 12 years.2
We chose Scratch for our study because it has been the center of several influential studies on

informal learning in social computing and has been described as a CoP or site for situated learning
in a range of previous studies [12, 13, 23]. Beyond its importance in social computing scholarship,
Scratch is one of the largest online communities for children learning to code. Critically for our
analysis, Scratch supports a variety of learning outcomes and forms of participation that allow
us to test all three of our research questions and test the hypotheses associated with each arrow

1https://scratch.mit.edu/
2All statistics about Scratch community activity and users are taken from the public information at: https://scratch.mit.edu/
statistics/
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in Figure 1. Scratch users have access to practice proxies in the form of affordances that support
users in viewing, editing, and building on others’ code by downloading and remixing each other’s
projects [39]. Previous studies have found evidence that remixing others’ projects is associated
with measures of learning about programming [12]. Scratch also supports users to build social
connections by “friending” other users to form social networks and a shared sense of community
[3, 4]. Scratch users can participate in feedback exchange by commenting on each others’ projects, as
shown in Figure 2b. For example, previous research has revealed collaborative debugging activities
in project comments [49]. Finally, users can demonstrate social support by “loving” (upvoting) and
“favoriting” (bookmarking) projects of others. We describe how these features map to our measure
in the following section.

4 DATA AND MEASURES
Our data are drawn from publicly available Scratch Research Dataset (SRD), which includes compre-
hensive public data from the first 5 years of activity in Scratch between 2007 and 2012 [25]. We
further restrict our analysis to projects created between 2 July 2009 and 10 April 2012 because both
programming and social affordances in the site were consistent during this period.3 Our analysis
relies on the tables projects, users, pcomments, gcomments, project_blocks, favorites, lovers, viewers,
and friends from the SRD. Although this dataset is almost 10 years old, limiting ourselves to data
from this period means that we can be more sure that the data are generated consistently and
that others can reproduce our analysis using public data. To further support reproducibility, we
have made the complete analytical code used in our analysis available.4 As in many other large
online communities, Scratch users frequently register and participate only briefly before becoming
inactive [11]. Because we are interested in how users’ activities as newcomers predict long-term
outcomes, we created a user-level dataset with 121,149 users who were active for at least one day
after their initial registration during our period of observation.

For all of our research questions, we attempt to measure activity during two periods: users’ time
spent as newcomers and their time as established users. Following a series of previous studies
on Scratch, we define the “newcomer period” of Scratch users as consisting of the first 14 days
after each user creates their account on Scratch. Like participants in most online communities,
Scratch users’ transition from newcomers to established members is fuzzy and variable. From our
own participation in the Scratch community, we sense that nearly all users would be considered
newcomers on their first several days, but most users would no longer be considered newcomers
after more than a month of activity. We choose 14 days because it falls between this range and
because it is embedded in one of Scratch’s key platform policies in that “Scratcher” status is only
granted to users who have been on the platform for at least 14 days.5 Within Scratch, users with
Scratcher status are typically not considered newcomers by other community members and have
access to more advanced programming features, such as the Scratch Cloud Variables [13]. Other
social computing studies have also defined the first 14-day period as the newcomer period and
use user behaviors in this period to predict subsequent activities [7]. Because this choice of 14
days is necessarily arbitrary, we also repeated our analyses with 2, 7, and 30 days as the length
of the newcomer period in a series of robustness checks. All these analyses lead to similar results
and conclusions. We include Table 1 to give a sense of the distribution of activity in the first 14
days in our sample. A pattern—common in online community data from many sources—is that our

3https://en.scratch-wiki.info/wiki/Scratch_1.4
4https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/0VXEMB
5https://en.scratch-wiki.info/wiki/Scratcher
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measures are heavily right-skewed. Although some users are very active, the median number for
most measures is 0.

Measure Mean St. Dev. Median Range
Original projects made in the first 14 days 2.200 4.515 1 [0, 222]
Remixes made in the first 14 days 0.656 2.219 0 [0, 130]
Friends made in the first 14 days 1.269 9.115 0 [0, 1,487]
Comments made in the first 14 days 4.516 26.640 0 [0, 2,450]
Friends received in the first 14 days 0.832 2.877 0 [0, 206]
Loves received in the first 14 days 0.492 2.668 0 [0, 261]
Views received in the first 14 days 11.133 34.935 3 [0, 4, 161]
Remixes received in the first 14 days 0.111 1.528 0 [0, 446]
Comments received in the first 14 days 2.706 16.079 0 [0, 1,418]
Favorites received in the first 14 days 0.271 1.529 0 [0, 160]
CT concepts displayed in the first 14 days 2.886 2.364 3 [0, 6]
Total active duration (in days) 110.656 171.079 36 [1, 1,002]
Total new CT concepts 4.281 1.981 5 [0, 6]

Table 1. Descriptive statistics for a range of measures of user activity in Scratch including all activities that
factor into our analysis.

Because most of the variation in the variables is between 0 and 1, we transform most of these
variables into simple dichotomousmeasures for analysis. Each of themeasures used in our regression
analysis is shown in Table 2. Three variables—Stayed?,New_CT_concepts?, and Received_new_loves?—
are our binary outcome variables. The rest are independent variables and controls. All of these are
drawn directly from the SRD or computed through merging and aggregating user-level activities
across tables in ways that are self-explanatory and well documented in our code.
The most important exception to this is our measures related to computational thinking (CT)

concepts. CT is defined as “the thought processes involved in the formulation of problems and their
solutions so that the solutions are represented in a form that can be carried out effectively by an
information processing agent” [54]. Referring to Brennan and Resnick’s [2] interpretation of CT
and categorization of CT concepts, Scratch’s designers designed programming blocks to embody
specific CT concepts, including loops, parallelism, events, conditionals, operations, and data [45].
Our measure of CT concepts captures the number of each distinct concept that a user displays in
their projects made in their first 14 days. The specific CT concept-to-block mapping that we use is
drawn from the study by Dasgupta et al. [12] and can be found in our appendix in Table 4.

4.1 Measures
4.1.1 Dependent Variables. Because Scratch does not make any systematic attempt to measure
learning, an analysis like ours must rely heavily on proxymeasures of our outcomes.We constructed
three outcome variables that correspond to our three research questions. The outcome variable
for R1 measures the domain being learned in Scratch—the computational skills. To construct
a measure to capture the learning of computational skills, we follow the approach of previous
quantitative studies on computational learning in Scratch. Our measure captures the size of the
learners’ repertoire in terms of the number of types of CT concepts a user has demonstrated in their
projects [12, 13, 48, 55]. We construct an outcome measure to capture the learning of computational
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Variable Mean St. Dev. Median Range Type

Independent variables:

Made_original_project? 0.710 - 1 {0,1} binary
Made_remix? 0.271 - 0 {0,1} binary
Made_friend? 0.247 - 0 {0,1} binary
Made_comment? 0.344 - 0 {0,1} binary

Control variables:

Has_been_friended? 0.271 - 0 {0,1} binary
Has_been_loved? 0.170 - 0 {0,1} binary
Has_been_viewed? 0.725 - 1 {0,1} binary
Has_been_remixed? 0.057 - 0 {0,1} binary
Has_been_commented? 0.329 - 0 {0,1} binary
Has_been_favorited? 0.116 - 0 {0,1} binary
CT_concepts 2.886 2.364 3 [0,6] count

Outcome variables:

Stayed? 0.678 - 1 {0,1} binary
New_CT_concepts? 0.396 - 0 {0,1} binary
Received_new_loves? 0.044 - 0 {0,1} binary

Table 2. Distribution of variables used for regressions.

skills: New_CT_concepts?, a binary variable of whether the user uses any new CT concepts in their
projects after the first 14 days.

For the outcome variable for R2, our proxy measure for community membership is the duration
of a user staying active in the community. Although this is not a direct measure of learning, CoP
theory suggests that users who are more integrated into a community will stay longer. We measure
this outcome with a binary variable, Stayed?, that captures whether users will participate in any
recorded community activities after 14 days. In this case, activity can include sharing original or
remixed projects, posting comments, favoriting, and/or friending.

ForR3, wewant to test how participation in feedback exchange contributes to learning community-
specific practices and values. Because it is difficult to directly measure users’ learning of community
values, we explore H3 using a proxy that seeks to measure the Scratch community’s positive
reaction to projects made by a user. Following previous work by Hill and Monroy-Hernández [24],
we measure the reaction of the Scratch community to a user’s projects as the number of loves
received by that user. Specifically, we construct the measure for the outcome variable in R3 as
Received_new_love?, a binary variable of whether the user received any loves on projects created
after their first 14 days.

4.1.2 Independent Variables. We construct four independent variables to measure the four types of
LPP that we describe in §2.4. First, we construct a measure for the LPP of contribution to core tasks.
Since the Scratch community is designed to help children learn computer programming, the core
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task in Scratch is to write code and share original projects [45]. Therefore, we construct a binary
measure,Made_original_project?, that captures whether a user has shared an original project in their
first 14 days. Second, we construct a measure for engagement with practice proxies. Drawing from
previous literature on LPP in Scratch, we choose to operationalize practice proxies as Made_remix?,
a binary variable of whether the user remixed in their first 14 days. Third, we construct a measure
for social bonding. The most explicit way to form social bonds in Scratch is by adding other users
as “friends.” In Scratch, friending means that a user has followed another user and will receive
notifications when they post new projects.6 Because we want to measure whether a user is actively
participating in forming social bonds, we construct a binary variable,Made_friend?, which captures
whether a user has friended at least one other user in their first 14 days. Fourth, we constructed a
measure for newcomers’ participation in feedback exchange. In Scratch, feedback is exchanged
mainly in the form of comments [49]. There are two types of comments in Scratch: comments on
projects and on “galleries.” We sum these two types of comments into the total number of comments
posted and received by each user. Because we want to ensure that we are measuring whether a
user is actively engaged in feedback exchange, we construct a binary variable, Made_comment?,
which captures whether a user has posted a comment in their first 14 days.

4.2 Control variables
Based on previous work, we add a series of control variables that capture reasons that users might
differ in their learning outcomes beyond differences in the four types of LPPwe identify. For example,
because previous literature has suggested that social support can affect newcomers’ learning
[7, 17, 32], we control for incoming social approval on projects, constructed as four binary variables—
Has_been_loved?, Has_been_favorited?, Has_been_viewed?, and Has_been_remixed?—which measure
whether a user received loves, favorites, views, and remixes on their projects, respectively, in
their first 14 days on Scratch. We also construct two binary variables, Has_been_commented?
and Has_been_friended?, to control for the effect of passively received feedback and social bonds.
Because the programming experience of users before joining the Scratch community may affect
users’ learning of CT concepts and the reception of their projects within Scratch, we also included
a control variable, CT_concepts that measures the total number of unique CT concepts used by a
user in their first 14 days on Scratch. This control is only relevant in R1 and R3.

5 ANALYTIC PLAN
To answer R1 using the binary outcome variable New_CT_concepts?, we fit a logistic regression
model on the dataset of 121,149 users using the GLM function in R.7 Because the distribution of the
count control variable CT_concepts is right-skewed (i.e., most users used 0 CT concepts), we use
a started log transformation in all the models involving this control (i.e., log(𝑥 + 1)). Because our
outcomes and all other measures are binary, our model is nonparametric, except for our CT_concepts
variable. Our formal model for (M1) is as follows:

6https://en.scratch-wiki.info/wiki/Friend
7https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
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log
(

𝑝(New_CT_concepts?)
1 − 𝑝(New_CT_concepts?)

)
= 𝛽0 + 𝛽1Made_original_project? + 𝛽2Made_remix?

+𝛽3Made_friend?+𝛽4Made_comment?+𝛽5Has_been_friended?
+ 𝛽6Has_been_loved? + 𝛽7Has_been_viewed?
+ 𝛽8Has_been_remixed? + 𝛽9Has_been_commented?
+ 𝛽10Has_been_favorited? + 𝛽11 log (CT_concepts + 1)

(1)

To answer R2 with the binary outcome variable Stayed?, we fit a logistic regression model (M2)
that is identical to the model in Equation 1, except that it excludes the logarithmic-transformed
variable CT_concepts and the associated parameter 𝛽11. The dependent variable is as follows:

(2)log
(

𝑝(Stayed?)
1 − 𝑝(Stayed?)

)
To answer R3 with the binary outcome variable Received_new_loves?, we fit a logistic regression

model on the full dataset. Our formal model (M3) is the same as that in Equation 1 but with the
following dependent variable:

(3)log
(

𝑝(Received_new_loves?)
1 − 𝑝(Received_new_loves?)

)
6 RESULTS
As the first step in our analysis, we construct a series of bivariate graphs to show differences in the
distributions of our outcomes across strata representing our key independent variables. These plots
are shown in Figure 3. In general, we find large differences in answers to all three of our research
questions. Of course, these plots are exploratory; the observed relationships could be driven by
any number of confounders. As a result, we explore our research questions using the full array of
controls in our regressions.

The regression results for all three research questions are shown in Table 3. Because interpreting
marginal effects from regression models with many covariates can be challenging, especially in the
case of GLM models such as logistic regression, we present a series of plots of model-predicted
values in Figure 4. We do so by identifying the median values for each of our control variables
(shown in Table 2) and then generating model predicted values for two prototypical users that vary
only in terms of our key independent variables—e.g., a user who has (or has not) remixed, and so
on. Each of the key independent variables not being visualized is also held at the sample medians.

6.1 Domain
For R1, we found that making original projects as a newcomer is positively associated with the
usage of new computational concepts in the long term, whereas remixing as a newcomer has
the opposite effect. As shown in Table 3, the odds that a user who created an original project
in their first 14 days on Scratch would use new CT concepts afterward are 1.55 times the odds
that an otherwise similar user who had not created an original project would do so (𝛽 = 0.44;
SE = 0.03; 𝑝 < 0.001). As seen in Figure 4 (R1a), our model predicts that approximately 81% of the
prototypical users who had not made original projects in their first 14 days would use new CT
concepts afterward, whereas approximately 87% of otherwise similar users who had made original
projects would. Furthermore, we find that the odds that a user who remixed in their first 14 days
would use a new CT concept afterward are 0.74 times the odds of an otherwise similar user who
had not done so (𝛽 = −0.30; SE = 0.02; 𝑝 < 0.001). As seen in Figure 4 (R1b), our model predicts
that approximately 81% of prototypical users who had not remixed in their first 14 days would use
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Fig. 3. Bivariate plots that show the differences in the distributions of outcome variables across strata of our
dataset that reflect the independent variables associated with each of our research questions.

new CT concepts afterward, whereas approximately 76% of the otherwise similar users who had
remixed would. The effects of friending and commenting are not statistically significant.

6.2 Community
For R2, we found thatmaking original projects and remixing as a newcomer are negatively associated
with long-term stay in the community, whereas making friends and commenting as a newcomer
were positively correlated with the probability of staying in the community for 14 days. The odds
that a user who created an original project in their first 14 days in Scratch would stay in the
community afterward are 0.53 times the odds that an otherwise similar user who had not created
an original project would do so (𝛽 = −0.63; SE = 0.02; 𝑝 < 0.001). As seen in Figure 4 (R2a), our
model predicts that approximately 91% of prototypical users who had not made original projects
in the first 14 days will stay longer than 14 days, whereas only approximately 84% of otherwise
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New CT concept? Stayed? Received new love?
(M1) (M2) (M3)

(Intercept) 1.47∗∗∗ 2.27∗∗∗ −1.16∗∗∗
(0.01) (0.02) (0.01)

Made_original_project? 0.44∗∗∗ −0.63∗∗∗ −0.71∗∗∗
(0.03) (0.02) (0.04)

Made_remix? −0.30∗∗∗ −0.24∗∗∗ 0.00
(0.02) (0.02) (0.02)

Made_friend? 0.01 0.34∗∗∗ 0.28∗∗∗
(0.02) (0.02) (0.02)

Made_comment? 0.00 0.48∗∗∗ 0.95∗∗∗
(0.02) (0.02) (0.02)

Has_been_friended? 0.20∗∗∗ 0.38∗∗∗ 0.42∗∗∗
(0.02) (0.02) (0.02)

Has_been_loved? −0.02 0.19∗∗∗ 0.70∗∗∗
(0.03) (0.02) (0.02)

Has_been_viewed? −1.25∗∗∗ −1.70∗∗∗ −0.76∗∗∗
(0.02) (0.03) (0.03)

Has_been_remixed? 0.04 0.12∗∗∗ 0.31∗∗∗
(0.03) (0.03) (0.03)

Has_been_commented? −0.13∗∗∗ 0.00 0.26∗∗∗
(0.02) (0.02) (0.02)

Has_been_favorited? −0.04 0.17∗∗∗ 0.41∗∗∗
(0.03) (0.03) (0.02)

log1p(CT_concepts) −1.19∗∗∗ N/A 0.17∗∗∗
(0.02) (0.02)

AIC 125313.82 133601.48 119286.65
BIC 125430.28 133708.23 119403.11
Log Likelihood −62644.91 −66789.74 −59631.33
Deviance 125289.82 133579.48 119262.65
McFadden’s pseudo R-squared 0.23 0.12 0.14
Num. obs. 121149 121149 121149
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 3. Logistic regression models that predict the probability that a user uses a new CT concept (M1), stays
active (M2), and receives loves on new projects (M3) created after their first 14 days on the community. The
models are fit to the user-level dataset that includes aggregated activities of 121, 149 users.

similar users who had made original projects would stay. In terms of the effect of remixing, the
odds that users who remixed others’ projects in their first 14 days will stay longer than 14 days are
0.79 times the odds of a user who did not do so (𝛽 = −0.24; SE = 0.01; 𝑝 < 0.001). As seen in Figure
4 (R2b), our model predicts that more than 90% of prototypical users who did not remix in their first
14 days would stay in the community beyond 14 days, whereas approximately 88% of otherwise
similar users who had remixed would. In contrast, the odds that users who friended others in their
first 14 days would stay past that time period are 1.40 times the odds that a user who did not friend
anyone would (𝛽 = 0.34; SE = 0.02; 𝑝 < 0.001). Figure 4 (R2c) shows that our model predicts that
approximately 90% of our prototypical users who had not friended anyone in their first 14 days
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Fig. 4. Plots of model predicted probabilities corresponding to each of our research questions. Each figure
shows the model predicted probabilities for two prototypical users who have median values for each of
our control variables; these users vary only in terms of the key independent variable in the corresponding
hypothesis. Error bars reflect the marginal effects of our key independent variable (1.96 × SE).

would stay in the community past 14 days, whereas approximately 93% of otherwise similar users
who had friended people would do so. For users who posted feedback in the community in their
first 14 days, their odds of staying in Scratch after 14 days are 1.62 times the odds of users who
did not (𝛽 = 0.48; SE = 0.01; 𝑝 < 0.001). Figure 4 (R2d) shows that our model predicts that only
approximately 90% of prototypical users who had not posted any comments in their first 14 days
would stay in the community past 14 days, whereas approximately 94% of otherwise similar users
who had posted comments would.
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6.3 Practice
For R3, we found that while making original projects as a newcomer is negatively associated
with receiving loves from the community in the long term, making friends and commenting as
a newcomer have a positive relationship with the outcome. Our model predicts that users who
created an original project in their first 14 days in Scratch have 0.49 times the odds of receiving
loves for their projects after 14 days compared with those who did not post feedback in the same
newcomer period (𝛽 = −0.71; SE = 0.04; 𝑝 < 0.001). As seen in Figure 4 (R3a), our model predicts
that approximately 24% of prototypical users who had not made original projects in their first 14
days will stay longer than 14 days, whereas only approximately 13% of otherwise similar users
who had made original projects would. In contrast, the odds that users who friended others in
their first 14 days would receive new loves are 1.32 times the odds that a user who did not friend
anyone would do so (𝛽 = 0.28; SE = 0.02; 𝑝 < 0.001). Figure 4 (R3c) shows that our model predicts
that approximately 24% of our prototypical users who had not friended anyone in the first 14 days
would stay in the community past 14 days, whereas approximately 29% of otherwise similar users
who had friended people would do so. In terms of feedback exchange, we find evidence that users
who posted feedback in the community in their first 14 days would have 2.58 times the odds to
receive loves for their projects after 14 days compared to those who did not post feedback in their
newcomer period (𝛽 = 0.95; SE = 0.02; 𝑝 < 0.001). As shown in Figure 4 (R3d), the predicted
probability of receiving loves for new projects created after 14 days is only approximately 25% for
prototypical users who did not comment during their initial period, but this value is close to 45%
for those who did. The effect of remixing is not statistically significant.

7 DISCUSSION
In this paper, we present a quantitative study with data from the Scratch community that investi-
gates how newcomers’ LPP contributes to different kinds of learning in CoP. Our paper makes a
contribution to social computing theory by drawing in Wenger et al.’s [53] three types of learning
from the broader CoP literature: development of domain skills, development of identity as a com-
munity member, and development of community-specific values and practices. In our synthesis of
the CoP literature in social computing, we identified four types of LPP common among newcomers
(contribution to core tasks, engagement with practice proxies, social bonding, and feedback ex-
change) and formed three research questions related to understanding how the early participation
of users in the community will predict learning outcomes in CoPs.

We contribute what we think is the first quantitative test of CoP theory in the context of social
computing. Analytically speaking, our work tested 12 hypotheses that correspond to the 12 possible
relationships between our independent and dependent variables (i.e., the lines in Figure 1). Our work
finds that most of these relationships are statistically significant, but that the signs and relative
magnitudes of parameters associated with each type of LPP vary across the types of learning
outcomes. At a very high level, our results provide concrete evidence that different types of LPP
have different relationships with different important facets of learning in online CoPs. What is
productive for some types of learning outcomes is unhelpful for others, and vice versa. We devote
the remainder of our discussion to unpacking our specific results.

7.1 Supporting contribution to core tasks
Our study finds quantitative evidence for the belief that learners in a CoP will learn the domain by
being part of the core tasks in the community. This finding is consistent with the constructionist
design approach behind Scratch. In appears that by participating in epistemologically relevant
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project creation, learners can appropriate the abstract concepts behind their hands-on experiences
[42, 44, 45].

That being said, contribution to core tasks is negatively associated with our measure of learning
as membership identity and community-specific practices. We speculate that because creating
a programming project from scratch can be challenging for novices, some newcomers might
feel discouraged and, as a result, turn away from the community. This is consistent with the
results reported in previous literature, which indicate that it can be challenging for newcomers
to follow community norms while making contributions [21]. Existing resources reflecting good
practices are often composed by experienced users and contain contextual information that is not
beginner-friendly [15, 36]. These might be obstacles for newcomers looking to adopt community
values.

Designers of the Scratch language have made enormous efforts to lower the bar of programming
for novices [45]. Still, making a new project, however simple, might be overwhelming for someone
without programming experience. Future design of informal learning communities like Scratch
could consider offering easier options for newcomers to engage in core tasks. For example, in
some other online CoPs dedicated to software development, newcomers can participate in simple,
collaborative, programming-related tasks such as reporting bugs [51]. Scratch might try to direct
newcomers toward types of newcomer-friendly programming tasks such as building on example
templates, identifying bugs in collaborative projects, and helping more experienced users with a
small part of their projects.

7.2 Supporting engagement with practice proxies
Our exploration shows that engagement with practice proxies is negatively associated with the
development of domain knowledge and the formation of membership identity. Although previous
work on Scratch shows that users who remixed projects containing a CT concept tended to use the
same CT concept in their own projects [12], our findings suggest that this may not contribute to
the expansion of computational knowledge and skills in general. Our results are consistent with
previous findings on remixing, in which users tend to show less innovation and originality when
building from the most frequently remixed programs [24].
More research needs to be conducted to understand exactly why remixing negatively impacts

some dimensions of learning. One possible explanation is that newcomers may have trouble
understanding specific choices in projects made by more experienced members and may not have
the confidence needed to try and build upon them. In Kaggle, novices face a similar challenge
of understanding and reusing publicly shared code by experts due to incomplete documentation
on dependencies, missing rationales, and lack of context [10]. In these cases, simply providing
newcomers with practice proxies is likely not enough.
Possible solutions might include additional scaffolding by established community members to

document their steps and reasoning processes in the first place. Wang et al. [52] and Rule et al. [47]
provide great guidelines and examples for such design in the context of computational learning.
Informal learning communities should also offer newcomers the opportunity to ask questions to
experienced members. Such a design should scaffold the asker to clearly communicate which step
they are confused about in context and support answerers to effectively showcase their procedures
and rationales. For example, in the context of Scratch, a synchronous Q&A function (e.g., an opt-in
chat room similar to the one proposed by Ford et al. [16]) could be implemented in the remix feature
so that newcomers could discuss the coding mechanisms with the original creators of the projects
being remixed.
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7.3 Supporting newcomer’s socialization
Newcomers’ social bonding activity is associated with the formation of community identity. Such
socialization activities are also positively correlated with the development of community-specific
practices. This finding can be read as a strong response to the skeptics of informal learning in
online CoPs who argue that chatting and socialization will distract users. Our results complement
other work that shows that socialization can be a legitimate pathway to learning what the com-
munity values [9]. One possible interpretation is that social bonding can facilitate computational
participation [30]—learning through participating in socially situated contexts.

Better ways to socialize newcomers is a perennial topic in social computing. Our results suggest
that success in these efforts can support a variety of learning outcomes. Proactive efforts to reach
out to new users with comments are a useful way to jumpstart social bonding processes. Designers
of informal online learning systems may consider intentionally helping newcomers socialize with
each other and older members through community events or algorithmic matching mechanisms,
for example, making the transition from identity-based connections to bond-based connections
possible [32].

7.4 Supporting feedback exchange
Feedback exchange is positively associated with our measures of learning about both community
and practice. Complementing previous studies of collaborative debugging [49], our study offers
quantitative evidence that socially oriented newcomer participation can contribute to community
practices. Despite the promise of feedback exchange on learning, newcomers refrain from publicly
offering feedback because they are self-conscious about their social status and are not confident
in their expertise [36]. Nonpublic or anonymous feedback systems might be established so that
newcomers do not have to reveal themselves while interacting with community members [16].
Alternatively, scaffolds for composing discussion messages could be introduced so that newcomers
can have some idea about what to say in comments and participate in feedback exchange more
easily [28, 35].

8 THREATS TO VALIDITY
A series of articles in the social computing literature have argued about whether deeply engaged
and highly active users in online communities are “born and not made” [27, 41, 43]. In its analytic
structure, our work has quite a bit in common with born versus made studies by Panciera et al. [41]
and Huang et al. [27]. Both studies seek to make predictions about users’ long-term behavior using
measures of early activity. There are also important differences between these approaches and ours.
Born/made studies typically look at users’ very first engagement. Although we take a longer view in
the construction of our measures, our results are not sensitive to this decision. Although we include
a large body of control variables to address ex ante differences between users, we cannot fully rule
out the explanation that users who are more active early on are systematically different from users
who are not. In contrast, we might argue that our work points to an alternative explanation for
early studies that suggest that users are “born and not made.” Both our theoretical framework and
empirical results suggest that early activity may not be best thought of as an indicator of existing
differences in knowledge, commitment, and skills, but rather as a pathway through which users
can develop.

Furthermore, we define the “newcomer” period as the first 14 days after a user creates an account.
Although this decision is informed by our experiences with Scratch and although robustness checks
on user activities in the first 2, 7, and 30 days lead to consistent results, the choice of 14 days is
arbitrary and fails to capture important nuance in the way that Scratch users understand their own
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status, and the status of others, within their community. We hope that future work can improve on
this very limited measurement approach.
Another limitation of our work is that the four types of LPP that we identified are not a com-

prehensive list of all possible types of LPP in online communities, either in general or in Scratch
in particular. As the result of our review of relevant social computing literature, our enumeration
of these four types is put forward with humility and knowledge that is limited and incomplete.
Although we know that our list is not comprehensive, we hope that our enumeration and mea-
surement of four distinct types of LPP are sufficient to convey our high-level argument that there
are different types of newcomer engagement that can lead to different learning pathways. Future
research could explore other types of LPP and their impact on long-term learning outcomes.
Our work is also limited in that our measures are proxies rather than direct measures of the

concepts of interest. This is particularly important to acknowledge in terms of our learning outcome
measures. We rely on proxies because we simply do not have a way to evaluate actual learning in
Scratch. For example, we use differences in incoming loves as a proxy for an individual’s learning
about community-specific practices and values. It is important to remember that receiving positive
community reactions is an outcome of learning community practices, not a direct measure of
learning. Another example is that we use a measure of whether a user stays in the community
for longer than 14 days to proxy for a learner’s development of membership identity. We rely on
proxies because sociopsychological concepts are difficult to directly measure in informal settings
like Scratch, where there is little or no ability to conduct tests or even communicate with users.
Although we draw heavily from other work that has developed and evaluated proxy measures in
Scratch, all of these attempts are risky and prone to noise, or worse [12, 13]. Although far from
perfect, we believe that these proxies provide valuable insight into our research questions.

While our research questions describe causal relations, our regression analyses can only provide
correlational evidence. As is often the case in cross-sectional analyses, these relationships might be
due to variables that are correlated with, but not caused by, our predictors. We hope that design-
based field experiments can be conducted in the future to identify causal relationships between
specific types of newcomer LPP and the specific kind of learning in CoPs. Until then, we offer
our results as tentative evidence. Furthermore, our analysis focuses only on the main effect of the
independent variables. In an earlier version of the analysis, we include two-way interactions of
our independent variables as predictors in our models, and we include the results in Table 6 in the
appendix. Since understanding the interaction relationships between our independent variables is
not the goal of this analysis and it is difficult to interpret the coefficients of interactions, we did not
integrate these models into our main analysis. We urge future researchers to build on our work
and explore the interactions and combination of different types of LPP and their contribution to
different types of learning.

Our work is also limited in that all our outcomes are dichotomous. This is a choice we made for
two reasons. First, it means that our analysis is at a lower risk of violating parametric modeling
assumptions. Second, doing so also captures the vast majority of the variation in our outcomes.
However, this choice means that our results only paint part of the picture. Although we show
that sharing new projects and remixing early on are associated with a higher chance of using CT
concepts later, we do not know if more remixing leads to more new CT concepts among users who
continue. Although we leave this question for future work, we include an exploratory analysis
in Table 5 in our appendix that reproduces our three models with continuous measures of our
dependent variables among the relatively small proportion of users for whom our outcomes were
equal to 1. This is conceptually similar to a hurdle model. Although limited in several ways, these
results suggest that our dichotomous measures, which are strong predictors of new CT concepts,
staying active, and receiving loves, are not necessarily strong predictors of higher amounts of
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learning among users who have learned at all. We hope to refine and continue to explore the
relationship between the types of newcomer LPP and the magnitude of learning outcomes in future
studies.
Finally, our analysis focuses on Scratch as the single empirical setting. While Scratch is large,

active, and supports a wide range of activities, it is also unique in many aspects: its user population
mostly consists of young people, the community focuses on computational learning, and it contains
affordances such as remixing and viewing others’ full code. We do not know if our findings from
the Scratch online community will generalize to other settings or population groups. In addition,
we analyzed activities during a single time period, which was early in the Scratch community’s
lifetime. Since the affordances of Scratch have changed and the community itself has also grown
since then, we cannot know how well our findings will translate to Scratch today. We hope that
our case study offers a framework for studying different types of LPP and learning in online CoPs.
Future researchers could answer our research questions in other settings and compare their results
with our findings.

9 CONCLUSION
In this study, we present a quantitative approach to engaging with CoP theory in an informal online
learning context. Although previous studies in social computing have treated learning outcomes
as a single dimension, we build on work by Wenger et al. [53] to describe three distinct types
of learning that can be supported in online CoPs: learning about the domain, learning about the
community, and learning about the practice. We also identify four forms of LPP that are common in
informal online learning contexts. We use historical data from Scratch to answer a series of research
questions about whether certain types of newcomer LPP contribute to certain kinds of learning. Our
results suggest that there is a range of possible pathways to a range of distinct learning outcomes.
Taking a broad exploratory approach instead of a more narrow hypothesis testing structure,

we find evidence of relationships between types of LPP and learning outcomes that we believe
are entirely untheorized in the CoP literature in social computing. For example, we find that
newcomer socializing is associated with learning about the community and its practices. Our study
offers theoretical and empirical contributions to social computing research on informal learning
settings, as well as practical implications on how to best design informal online learning systems.
In summary, our study suggests that online communities afford many possible destinations in
learning and many pathways to each.
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A APPENDIX

CT concepts Scratch Blocks
Loops forever, foreverIf, repeat, repeatUntil
Parallelism startHatTriggered, eventHatTriggered, keyHatTriggered, mouseHatTriggered
Events eventHatTriggered, keyHatTriggered, mouseHatTriggered, bounceOffEdge,

turnAwayFromEdge, touching, touchingColor, colorSees, mousePressed,
keyPressed, isLoud, sensor, sensorPressed, distanceTo

Conditionals waitUntil, foreverIf, if, ifElse, repeatUntil, bounceOffEdge,
turnAwayFromEdge, touching, touchingColor, colorSees, mousePressed,
keyPressed, isLoud, sensor, sensorPressed, lessThan, equalTo, greaterThan,
and, or, not, listContains

Operators lessThan, equalTo, greaterThan, and, or, not, add,
subtract, multiply, divide, pickRandomFromTo, concatenateWith,
letterOf, stringLength, mod, round, abs, sqrt,
sin, cos, tan, asin, acos, atan, ln, log, e^, 10^

Data setVarTo, changeVarBy, showVariable, hideVariable, readVariable,
addToList, deleteLineOfList, insertAtOfList, setLineOfListTo,
contentsOfList, getLineOfList, lineCountOfList, listContains

Table 4. CT concepts mapping to blocks in the Scratch programming language, adopted from Dasgupta et al.
[12]. We use this mapping to construct our outcome variable for H1a and H1b about whether new CT concept
is presented in projects created after a user’s first 14 days in the community.

Received July 2021; revised November 2021; accepted April 2022

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. CSCW2, Article 381. Publication date: November 2022.



Many Destinations, Many Pathways 381:25

Variables Total new CT concepts Active duration New loves per project
(M1) (M2) (M3)

(Intercept) 4.65∗∗ 4.81∗∗ 0.15∗∗
(0.01) (0.01) (0.00)

Made_original_project? −0.09∗ −0.28∗∗ −0.15∗∗
(0.04) (0.02) (0.01)

Made_remix? 0.02 −0.04∗ −0.04∗∗
(0.02) (0.01) (0.00)

Made_friend? −0.18∗∗ −0.03∗ 0.02∗∗
(0.02) (0.01) (0.00)

Made_comment? −0.09∗∗ 0.32∗∗ 0.16∗∗
(0.02) (0.01) (0.00)

Has_been_friended? −0.06∗ 0.09∗∗ 0.08∗∗
(0.02) (0.01) (0.00)

Has_been_loved? −0.03 0.11∗∗ 0.19∗∗
(0.03) (0.01) (0.01)

Has_been_viewed? 0.00 0.06∗∗ 0.00
(0.03) (0.02) (0.01)

Has_been_remixed? −0.02 0.11∗∗ 0.05∗∗
(0.03) (0.02) (0.01)

Has_been_commented? 0.01 0.14∗∗ 0.01∗
(0.02) (0.01) (0.00)

Has_been_favorited? 0.01 0.11∗∗ 0.12∗∗
(0.03) (0.02) (0.01)

log1p(CT_concepts) −1.68∗∗ NA 0.03∗∗
(0.02) NA (0.00)

R2 0.47 NA 0.15
Adj. R2 0.47 NA 0.15
AIC NA 1140546.37 NA
BIC NA 1140660.20 NA
Log Likelihood NA −570261.19 NA
Deviance NA 116442.92 NA
McFadden’s pseudo R-squared 0.16 0.01 0.14
Num. obs. 47952 97295 79963
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 5. Results from our early exploratory analysis based on continuous construct of outcome variables and
subsets of our user level dataset used from the main analysis. M1_c tests H1, where Total_new_CT_concepts
is a count variable of number of new CT concepts used in projects created after the first 14 days among the
47, 952 users who had used new CT concepts after 14 days. M2_c tests H2, where Active_duration is a count
variable of the number of days that a user engages in any recorded community activities and is measured by
the number of days between the the end of the users 14 day period and the last in which they are active. This
is also constructed on the subset of 97, 295 users who were active after the first 14 days. M3_c tests H3, where
New_loves_per_project is a continuous variable of average number of loves received by a user on projects
created after the first 14 days, among the 79, 963 users who did create projects after 14 days. We chose to
exclude these results from our main findings due to small sample size (< 10% of our original dataset), and
truncation issues.
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Variables New CT concept? Stayed? Received new love?
(M1) (M2) (M3)

(Intercept) 1.83∗∗∗ 3.39∗∗∗ −1.04∗∗∗
(0.02) (0.04) (0.02)

Made_original_project? −0.79∗∗∗ −3.05∗∗∗ −1.63∗∗∗
(0.04) (0.05) (0.06)

Made_remix? −2.34∗∗∗ −3.59∗∗∗ −1.54∗∗∗
(0.04) (0.05) (0.06)

Made_friend? −0.08 0.30∗∗∗ 0.21∗∗∗
(0.05) (0.07) (0.04)

Made_comment? 0.03 0.52∗∗∗ 1.01∗∗∗
(0.04) (0.06) (0.03)

Has_been_friended? 0.17∗∗∗ 0.35∗∗∗ 0.40∗∗∗
(0.02) (0.02) (0.02)

Has_been_loved? −0.05 0.16∗∗∗ 0.68∗∗∗
(0.03) (0.02) (0.02)

Has_been_viewed? −0.27∗∗∗ −0.35∗∗∗ 0.14∗∗
(0.03) (0.03) (0.05)

Has_been_remixed? −0.01 0.08∗ 0.29∗∗∗
(0.03) (0.03) (0.03)

Has_been_commented? −0.13∗∗∗ −0.01 0.25∗∗∗
(0.02) (0.02) (0.02)

Has_been_favoriated? −0.09∗∗ 0.13∗∗∗ 0.39∗∗∗
(0.03) (0.03) (0.02)

log1p(CT_concepts) −1.22∗∗∗ NA 0.13∗∗∗
(0.02) NA (0.02)

Made_comment? ×Made_remix? 0.22∗∗∗ 0.17∗∗∗ 0.11∗∗
(0.04) (0.04) (0.04)

Made_comment? ×Made_friend? −0.01 0.11∗∗ −0.12∗∗∗
(0.04) (0.04) (0.04)

Made_comment? ×Made_original_project? −0.20∗∗∗ −0.19∗∗∗ −0.10∗∗
(0.04) (0.06) (0.04)

Made_remix? ×Made_friend? 0.10∗ 0.05 0.15∗∗∗
(0.04) (0.04) (0.04)

Made_remix? ×Made_original_project? 2.30∗∗∗ 3.60∗∗∗ 1.59∗∗∗
(0.05) (0.05) (0.06)

Made_friend? ×Made_original_project? 0.06 −0.06 0.13∗∗∗
(0.04) (0.06) (0.04)

AIC 122375.61 128298.77 118346.10
BIC 122550.30 128463.75 118520.78
Log Likelihood −61169.80 −64132.39 −59155.05
Deviance 122339.61 128264.77 118310.10
McFadden’s pseudo R-squared 0.25 0.16 0.14
Num. obs. 121149 121149 121149
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 6. Logistic regression models that include two-way interaction between independent variables as
predictors. Same as our main analysis, the models predict the likelihood that a user using new CT concept
(M1), staying active (M2), and receiving loves on new projects (M3) created after their first 14 days in the
community. Models are fit on the user level dataset including aggregated activities from 121149 users.
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