
From Hanging Out to Figuring It Out
Socializing Online as a Pathway to Computational Thinking

Samantha Shorey1 BenjaminMako Hill2
Samuel C. Woolley1

Although socializing is a powerful driver of youth engagement online, plat-
forms struggle to leverage engagement to promote learning. We seek to understand
this dynamic using a multi-stage analysis of over 14,000 comments on Scratch,
an online platform designed to support learning about programming. First, we
inductively develop the concept of “participatory debugging”—a practice through
which users learn through collaborative technical troubleshooting. Second, we
use a content analysis to establish how common the practice is on Scratch. Third,
we conduct a qualitative analysis of user activity over time and identify three
factors that serve as social antecedents of participatory debugging: (1) sustained
community, (2) identifiable problems, and (3) what we call “topic porousness”
to describe conversations that are able to span multiple topics. We integrate these
findings in a theoretical framework that highlights a productive tension between
the desire to promote learning and the interest-driven sub-communities that drive
user engagement in many newmedia environments.

1 University of Texas at Austin
2 University of Washington

Introduction

As programmers, and as people, we rarely get it right the first time. Failure is part of building
things. When faced with challenges, we often seek the mentorship and guidance of knowledge-
able others. In our everyday lives, social connections act as a pathway for problem solving—for
teaching us how to build and how to build better. Supporting the development of problem-
solving skills has become a priority for educators hoping to equip students with tools for the
modernworld. New educational programs are focused on the development of problem-solving
strategies, such as working together and asking questions—skills that are necessarily linked to
interaction with other people (Partnership for 21st Century Skills, 2019). Although the col-
laborative nature of problem solving is implicit in much of the research of digital media and
learning, only recently has a body of work on “connected learning” tied this social behavior to
young people’s learning of higher-order thinking skills (Ito et al, 2013).

1



2

This study contributes to the emerging agenda of connected learning by taking a three-stage
approach to studying the relationship between learning and commenting among users on
Scratch—an online community withmillions of users that is arguably themost popular setting
for young people to learn block-based programming. We use grounded theory analyses of 640
projects and 53 user project histories, as well as a content analysis of an additional 600 projects,
to examine and articulate the learning-oriented benefits associated with social interaction. We
propose the construct of participatory debugging, a process through which users on Scratch
(“Scratchers”) leverage the Comments space within projects to troubleshoot issues associated
with project design and to develop higher-order computational thinking skills. We also
identify three contextual factors that we argue are uniquely important to the development and
continued practice of participatory debugging: (1) a sustained community, (2) identifiable
problems, and (3) low topic density, or what we call “topic porousness.” We suggest that the
third proposition is especially significant because it articulates a central tension in connected
learning: the trade-off between the desire to promote learning of particular concepts (like those
associated with computational thinking) and engagement in interest-driven sub-communities
that Ito et al. (2009b) and others have recognized as a pathway for meaningful learning. We
conclude by synthesizing our findings and exploring their implications for the design of
connected learning in various contexts.

Background

Socializing and Learning

Influential approaches to education suggest that learning practices are strongly situated in so-
cial environments (Lave andWenger, 1991). Constructionist scholars such as Seymour Papert
(1976) have long advocated for learning environments that incorporate education into a “larger,
richer, cultural-social experience” (p. 7). Computers are ideal tools for constructionist learn-
ing, providing a collective space for self-directed exploration and skill development (Resnick,
Bruckman, and Martin, 1996). This is especially true of participatory media. Participatory
media environments are characterized by low barriers for engagement, an emphasis on sharing,
informal mentorship between experienced members and novices, and feelings of connection
among members of the group (Jenkins, 2009: 6). Predominantly social in nature, these envi-
ronments are a space for active learning where kids develop new skills as they create media with
and for eachother. Research suggests that participating in these social communities contributes
as much to learning as technical tools like software (Kafai and Burke, 2014).

In participatory media environments, social interactions often drive the creative and educa-
tional activities of young people. As Mimi Ito and her co-authors (2009b) outline inHanging
Out,Messing Around, Geeking Out, young people socialize online in varying ways. They “hang
out” and engage in friendship-driven activities, chatting with offline friends and peers. They
also “geek out,” an interest-driven activitymotivated by a shared interest or hobby. When social
relationships lead to budding interests in new activities, users participate in a productivemiddle
ground they call “messing around.” These cultural worlds have the power to transform what
one considers peers, as users hang out in interest-driven online spaces where social relationships

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



Socializing and Learning 3

lead tobuddingnew interests. Yet, reflecting on their previous research, Ito et al. (2018) observe
that although they saw ample evidence of social hanging out and interest-driven geeking out in
their varied field sites “few [young people] were taking advantage of the learning potential of
digital networks” (p. 2).

The subsequent “connected learning”model proposed by a teamof researchers focused on digi-
tal youth unites these activities and identifies three crucial factors for newmedia and education:
(1) support of peers, (2) engagement of personal interests, and (3) ties to academic opportunity
(Ito et al., 2013). At the confluence of these factors, young people engage with peers who share
their interests to expand and deepen their formal knowledge. Ito et al. write that “effective learn-
ing involves individual interest as well as social support to overcome adversity” (p. 4). In our
work, we examine this process to conceptualize howhanging out becomes “figuring it out”—as
young programmers face creative problems and then use the social features of an interest-driven
sub-community to overcome them.

Education-oriented organizations, such as the Partnership for 21st Century Skills (2019), have
identified “problem solving” as one of the most important and applicable skills for young peo-
ple today. Students need to develop strategies for utilizing their existing knowledge to creatively
seek solutions. In an increasingly digital world, problem-solving skills are often acquired in on-
line environments where young people learn (and learn from) computer-based tools. Through
these activities they develop skills that Janet Wing (2006) has called “computational thinking.”
Computational thinking is a way of approaching problems that uses a broad range of concepts
central to computer science. Rather than merely the ability to use a computer, computational
thinking is based inpractices andperspectives that canbeutilized in thematerial or digitalworld.
Practices like dividing things into smaller parts (modularizing), creating in test cycles (iterating),
or building on the work of others (remixing) are all manifestations of computational thinking
(Brennan andResnick, 2012). Our study is particularly focused on the practice of “debugging”:
strategies employed by users to “deal with and anticipate problems” (Brennan and Resnick,
2012: 7).

Debugging is a key aspect of computational thinking and, by its very nature, closely related
to the idea of problem solving. In traditional educational environments like school, students
are frequently placed in situations where they either “get something” or get it wrong (Papert,
1980: 21). As a computer programmer, you rarely get it right the first time. It is through
failure, and successful debugging, that programmers learn how to problem solve and to develop
strategies they can apply to both online and offline situations. Debugging can take the shape
of experimenting with code scripts, rewriting scripts, finding examples of scripts that work—
and even more familiar debugging behaviors like taking a break or asking someone for help
(Brennan and Resnick, 2012).

Constructionist learning scholars have consistently identified socializing as a necessary aspect of
learning online. Peer communities both motivate and support learning by providing role mod-
els, project examples, and an audience with which to share creations. The ability to help one
another is a catalyst for social interaction and enjoyment on game-making platforms (Bruck-
man, 1998). Rather than viewing programming as a solitary activity, they argue that educa-
tional advocates would be well served to view it as a “shared social practice”—requiring not just

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



Empirical Setting: Scratch Online Community 4

the skills to think computationally but also to participate computationally (Kafai, 2016; Kafai
and Burke, 2014). Although acknowledged as entwined, becoming a better programmer and
becoming a better collaborator are predominantly conceptualized as distinct outcomes in the
constructionist literature. Learning to code is weighed as an individual achievement, a personal
outcome of acquired skill. The social dimension is largely focused on the building of soft skills,
such as working well in teams (Kafai and Burke, 2015).

Problem solving in online spaces is often a collective endeavor. For example, researchers study-
ing the multi-player online gameWorld ofWarcraft observe that the game’s capacity for social
interaction helps players to both seek and evaluate information as they jointly develop shared
understanding (Martin and Steinkuehler, 2010; Steinkuehler and Duncan, 2008). In online
software development communities like GitHub, social features present programmers with
unique opportunities for collaborative team building and new methods of building software
(Begel, DeLine, and Zimmerman, 2010). Dabbish, Stuart, Tsay, and Herbsleb (2012) argue
that the transparent sharing of information onGitHub allows programmers tomore effectively
coordinate on projects and better their technical skills. The social components of these online
programming communities allow groups to advance software development through teamwork
and collective learning.

Ourwork furthers research on collective problem solvingwithin such communities to consider
the practices of young people and budding programmers. Specifically, we investigate the com-
putational practice of debugging within the Scratch online community. In doing so, we offer a
framework for identifying and nurturing productive social interaction as a pathway for acquir-
ing analytic, higher-order knowledge in youth-oriented participatory media environments.

Empirical Setting: Scratch Online Community

Developed with young people in mind, Scratch is a visual programming language that allows
users to build interactive media by snapping together programming blocks. Scratch’s develop-
ers at the Lifelong Kindergarten group at the MITMedia Lab situated the language within an
online community in which young people could engage in “construction-oriented, personally
meaningful acts of creative expression” (Brennan et al., 2010). The social nature of the Scratch
online community is intentional: users can interact with each other while they learn basic pro-
gramming by creating online “projects” that often take the form of animations and games.

AndresMonroy-Hernández (2012), creator of the Scratch online community, explained that he
sought to center socializing by building “a space where peers create, share, remix and even just
‘hang out’ ” (p. 38). To support this, Scratch has social features such as a “love it” button and
enables users to remix projects, curate projects into galleries, post on forums, and contribute
comments. When users encounter problems in constructing their projects, they often turn to
comment threads and forums to find helpful information from other users.
Within the large body of empirical research on Scratch, there is debate about the relationship
between socializing and learning. Qualitative analysis and case studies by Brennan et al. (2010),
Brennan et al. (2011), Fields et al. (2015), Kafai and Burke (2014), and Aragon et al. (2009)
all support the argument that socializing can play an important role in learning to program

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



5

on Scratch. In a quantitative study by Dasgupta et al. (2016), increased commenting (used as
a control variable) was shown to have a marginal but positive effect on the number of blocks
Scratchers had in their coding vocabulary.

Other empirical work has painted a less optimistic picture about the relationship between so-
cializing and learning about computing in the Scratch online community. The study from
Dasgupta et al. (2016) also showed that increased commenting was associated with a lower like-
lihood of using six complex Scratch blocks associated with computational thinking for the first
time. Gan, Hill and Dasgupta (2018) suggest that positive feedback in the form of “love its”
is negatively associated with users’ decisions to share subsequent Scratch projects—especially
among boys. This research reveals a tension between the community’s capacity for social activ-
ity and its capacity to promote learning through project creation.

Brennan et al. (2010) reflect in the concluding paragraphs of their articleMakingProjects,Mak-
ing Friends that there are two archetypes of Scratch users: “socializers” andmore computation-
ally focused “creators.” They suggest that both of these extremes present challenges in that
“socializers are deprived of opportunities to focus on interactive media creation and express
themselves with new forms” while “creators lack the benefit of learning with and from others,
developing the community’s and their own capacities for creation” (p. 78). Taken together, em-
pirical research suggests that although socializing on Scratch canbe a pathway to computational
thinking, this potential is frequently unrealized.

Data

The data for our study drew from the over 46million projects and 221million commentsmade
by users on Scratch. Our datawere collected as part of a large research project on informal learn-
ing environments overseen by the Committee on the Use ofHumans as Experimental Subjects
at the Massachusetts Institute of Technology. Creators posted all the projects and comments
analyzed here with the knowledge that they could be seen publicly online. Projects that have
since been deleted or made private by users have been eliminated from the dataset, respecting
the autonomy of Scratch users. Furthermore, Scratch doesn’t allow real names, requiring that
users’ identities remain anonymous both on Scratch and in our data. This study only utilizes
information from public data and involved no interaction or intervention by the researchers.

Project-Level Comment Data

In order to identify meaningful instances of peer feedback and begin to understand the condi-
tions of their occurrence on Scratch, we built a dataset that included a random subset of 1,240
projects shared in the community. The “sampling unit” was a single Scratch project. Our sam-
ple of projects was drawn from the population of Scratch projects that received three or more
comments—a restriction justified because our investigation was focused on understanding col-
laborative problem solving that occurs through social activity online. We felt that three com-
ments represented reasonable minimal activity for discussion and socialization. The dataset in-
cluded metadata about each project, including a hyperlink to the “live” project on Scratch and

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



User Project History Comment Data 6

a full textual representation of all the comments displayed in chronological order but threaded
in a way that is identical to how it would have been displayed on Scratch.

User Project History Comment Data

Because one of our goals was to understand the development of collaborative problem-solving
skills, we constructed a second dataset of users’ experiences over time. We hoped that these data
would reveal the processes through which users do or do not develop computational thinking
skills. To build an appropriate dataset, we wrote a Python script to collect all the commenting
activity on projects that were created by 53 users who we selected using the methodology de-
scribed in the next section. We created a separate file for each of the users and included the com-
ments made on every published project created by each of them during their time on Scratch.
Although 53 is not an enormous number of users, it reflects a large dataset because each user
can share many projects and each project can receive many comments. The number of projects
shared by these users ranged from one to more than 1,500 with a median of 29 projects. Like
activity in Scratch in general, the distribution of activity across users is highly skewed. In total,
the user trajectories comprised a dataset of 3,779 comments left on 5,213 projects.

Methodology

Our analysis was conducted in three stages. Stage I consisted of an inductive analysis of project-
level comment data that led to the identification of a construct that we call participatory debug-
ging. Stage II was a simple content analysis conducted on a random sample of Scratch projects
that established how common participatory debugging is on Scratch. Stage III was a second
inductive analysis that considered Scratch users’ project histories of shared projects to identify
a set of potential factors for the emergence of participatory debugging.

Because the goals of Stages I and III involve identifying recurrent characteristics of social inter-
actions, they are well suited to a grounded theory (Glaser and Strauss, 1967). Grounded theory
is an iterative procedure, which utilizes the “constant comparativemethod” (Glaser and Strauss,
1967: 101). Constant comparison begins with coding data into as many categories of analysis
as possible, during a period of “open coding” (Lindlof and Taylor, 2011: 246). Memos are
then used to create a codebook, which contains definitions of the codes, their relation to one
another in thematic categories, and examples from the text (Lindlof andTaylor, 2011: 251). As
new categories and codes are revealed, they shape and are applied to subsequent and previous
data (Glaser and Strauss, 1967: 109).

Stage I consisted of a grounded theory analysis of 640 projects and their full comment threads
conducted in parallel by two authors. The result of Stage I was a memo written by the first
author that described the construct of participatory debugging. The content of this memo is
described in the first portion of the Findings section and was used to guide subsequent stages
of our analysis. Stage II included a content analysis of 600 randomly selected Scratch project
comment threads in which we sought to identify the presence or absence of participatory de-
bugging activity as described in the Stage I memo. Following Neuendorf (2017), our content

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



7

analysis involved a “norming” step in which 100 projects were coded for the presence/absence
of participatory debugging by both authors and any disagreements were discussed (stage II-A).
Following this step, 300 projects were coded by two coders and intercoder reliability was as-
sessed (II-B). After establishing reliability, an additional 200 projects were coded by one of the
authors (II-C).

Although the random samples of projects used in Stage I and II provided examples of partici-
patory debugging and established how widespread it is, we found it difficult to understand the
social contexts that supported the emergence of the practice. Stage III sought to address this
by conducting a second grounded theory analysis of all projects shared by particular users over
time and the “cultures” that emerged in their comment threads. The user-level dataset used in
Stage III included all projects (and the projects’ associated comments) shared by the 53 users
whowe identified as showing evidence of participatory debugging in Stage II. Importantly, this
meant that each user project history had at least one instance of socially situated problem solv-
ing. The dataset used in Stage III included 5,213 projects and 3,779 comments. The user histo-
ries were randomly split into two sets, each coded by one of the authors. Exemplary or difficult
cases were highlighted, shared, and discussed. In all cases, examples of comments and drafts of
memos were read and discussed by the full research team throughout the iterative process of
theory generation. The datasets were analyzed with a focus on ongoing interactions that rep-
resented and shaped participatory debugging. We sought to understand the processes between
people, situations, and events and how they influence each other—an approach known as pro-
cess theory. Process theory deemphasizes individual participants in favor of understanding “the
particular context within which participants act and the influence that this context has on their
actions” (Maxwell, 2013: 30).

Table 1 lays out the stages and steps of our methodology within stages in terms of the number
of projects, number of comments, and the number of coders involved. In total, this work is
based on analysis of over 14,733 comments left on 6,453 projects.

Table 1
Qualitative data analysis steps
Stage Description Projects Comments Coders
I Construct Definition 640 2,846 2
II-A Norming 100 1,168 2
II-B Reliability Test 300 3,989 2
II-C Additional Projects 200 2,951 1
III User Project Histories (53 users) 5,213 3,779 1
TOTAL 6,543 14,733

Findings

Ourfindings fromStage I are the construct of participatory debugging. Our findings fromStage
II are the results of a content analysis that describe how common participatory debugging is on

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



Stage I: Participatory Debugging Practices 8

Scratch. Ourfindings fromStage III include three conditions inwhichparticipatory debugging
is performed most effectively. We present each in turn.

Stage I: Participatory Debugging Practices

The most salient and important theme to emerge from the grounded theory analysis of 640
projects in Stage I was a theme we ultimately labeled participatory debugging. Participatory de-
bugging describes a computational practice in which users leverage social interaction in order
to overcome challenges and achieve their goals. In themost basic sense, participatory debugging
occurs when the creator of a project identifies a problem with their own project and commu-
nicates this fact to others explicitly. This often happened in the project description when a
project creator would acknowledge shortcomings (“I know it has some errors”) or give specific
warnings (“the button doesn’t work”). In these situations, project creators are demonstrating
their awareness of how engaging with a larger online community is an important first step to-
ward receiving help—and that other Scratchers who view the project (thus experiencing the
error) might also possess the knowledge to fix it. When a creator identifies a glitch in their own
project, they open space for conversations and comments that lead to the other problem-solving
behaviors that produce a solution.

Project creators may also ask for help or assistance explicitly. Rather than requesting help from
a single user, creators most often addressed the larger community—issuing open-ended ques-
tions or declarations of distress. Requests can range from being general (“I need help!”) to
more specific (“how do you make a cloud list?”) In response, other Scratchers may comment
with explanatory solutions to the problem: “to improve the jumping use this script…” or “if
you want to reduce the forever loop, you can…”

In the most basic manifestation of participatory debugging, a Scratcher may simply state that a
glitch is present in the project they’re viewing with comments like “it glitches” or “it’s broken.”
Scratchers may also identify how the project is glitching (“the commands don’t do anything”)
or, more helpfully, what is causing the glitch and how to fix it: “great! instead of using [when
(key) key pressed] you might want to use [forever [if [key (key) pressed?]]]... it will make the
movement smoother!” Evenwhen creators don’t identify problems in their ownprojects, other
Scratchers identify problems and provide solutions without being solicited. The appearance of
these conversations demonstrates a norm of participation in which Scratchers see others and
themselves as a resource for improvement.

Importantly, participatory debugging is notmerely an activity that occurs between a project cre-
ator and a single expert user. Instead, it mobilizes the resources of multiple users to fixmultiple
problems onmultiple projects, within theComments space of a single project. Inwhat follows,
we see a conversation between four Scratchers, none of whom are the project creator. The first
two comments both identify a glitch (the speed of the text), with the first Scratcher providing
a solution. The third Scratcher then asks a seemingly unrelated programming question, receiv-
ing a detailed response from a fourth telling him what to do—add an additional programming
block—and how that block works in relation to other blocks:

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



Stage II: How Common Is Participatory Debugging? 9

P1: you should make it so that once somebody is done reading the text, they can
press space to hear the next thing instead of the Scratcher having to rush to read it.

P2: Text is too fast... And your spelling is not that good... Sorry.

P3: HeLp! There is this button in Control which says ”When I receive ______” I
typed in something...but I still do not understandwhat themessagemeans. HELP!
(PS. How do I work the message?)

P4 [in response to P3]: You have to use the broadcast block. Think of it this way,
the broadcast block makes the sprite say something all the other sprites can hear.
The when I receive block really means when I hear. If that doesn’t help comment
on one of my projects and I can do more explaining.

When Scratchers are faced with a problem, they seek out the successful projects of others, leav-
ing comments for more experienced Scratchers. They may comment to explain their situation
and to elicit an answer, or they may connect their comments to the project they are viewing—
asking “how did you do that?”

This manifests in unique ways, because the Scratch online community allows users to “see in-
side” an animation to view how it is coded. The ability to view the code of a project allows
the project to serve as a demonstration of successful coding concepts. Even though the cod-
ing blocks are always visible to other Scratchers, social engagement through the Comments
space still serves as a valuable explanatory tool. For example, in an outer space themed project
a Scratcher asks “Can you please explain how you got the position of the planet” and the cre-
ator responds “Ok, so first you make the sun. Where ever he is, make a variable for his x and y
position ….” and then continues to explain, step by step, how to execute the project.

With its focus on computational practices, participatory debugging describes problem-solving
behaviors concernedwith the functionality of a project, such as identifying glitches or problems
with code, rather than those thatweremore aesthetic suggestions related to theway a game looks
or how it is played. Although distinct, we found that examples of these behaviors have a high
co-occurrence with participatory debugging: projects in which users discuss how a game looks
are also likely to discuss how a gameworks. In both cases, project creators and Scratchers engage
with each other as a social resource.

Stage II: How Common Is Participatory Debugging?

In Stage II, we conducted a content analysis of Scratch projects in order to determine how
common participatory debugging is on Scratch. Our content analysis followed the methodol-
ogy laid out by Neuendorf (2017) and involved human coders viewing projects and comment
threads and judging whether the threads included examples of participatory debugging as we
defined it in thememo that resulted fromStage I (summarized in depth in the previous section).
As is typical in content analysis, our approach relied on the judgment of our human coders and
did not require the presence of particular keywords. To assess intercoder reliability of the con-
struct, we computed Krippendorff’s alpha on the sample of 300 independently coded projects

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



Stage III: Social Situations and Commenting Culture 10

conducted in Stage II-B and found that we were able to reliably code projects for the presence
or absence of participatory debugging (𝛼=0.79).
Within the sample of 600 projects coded in Stage II, we identified 53 examples of participatory
debugging or 8.8% of the projects in our sample. Using a binomial “exact” calculation, our 95%
confidence interval for the true value in the population from which our sample was drawn—
i.e., projects with at least 3 comments—is estimated as between 6.7% and 11.5%. Although
both our team and the Scratch design team were surprised that the number was this high, it is
evidence that participatory debugging practices are rare on Scratch.

Stage III: Social Situations and Commenting Culture

In the final step of our analysis, we sought to understand how and when participatory debug-
ging was fostered in group-oriented cultures of problem solving. To do so, we conducted an
additional round of grounded theory analysis on all the projects shared by the 53 users who
had showed evidence of participatory debugging in Stage II. We found that online comment-
ing spaces allow for participation in the form of deep social engagement involving shared inter-
ests or personal feelings as well as discussions related to programming. Although the technical
qualities of these social environments—the ability to comment, the ability to remix—were con-
sistent between users, how they were used was not. It is not the mere existence of commenting
spaces that leads to participatory debugging, but rather specific cultures of commenting. We
identified three factors that facilitated or hindered participatory debugging—from themost ba-
sic to the more complex: (1) a sustained community, (2) identified problems, and (3) “porous”
conversations that aren’t intensely focused on a singular topic.

Sustained community. A sustained community is defined by two characteristics: the presence
of others and consistent engagement. While the presence of others may seem like an obvious
aspect of participatory debugging, it is not a given on Scratch that other users will comment
on a creator’s project. For example, in one user’s history we see a series of eight projects (all
revised versions of the same project) in which he asks each time: “Please post suggestions for
full game,” but he gets no response. Overall, this user has a very low occurrence of comments
throughout his projects. Without the engagement of others, his calls for help do not result
in any real dialogue or opportunity for learning. A very similar call for feedback is met with a
response and a solutionwhen it came from another user who regularly receives comments from
about a dozen Scratchers. When this second user asks “is anyone else having slider difficulties,”
another Scratcher responds with the exact spot in the code that is broken. The creator replies
with a detailed explanation of the code: “Yeah, I can’t really fix that because here’s why: repeat
until <(answer) > [0]> ask [Hour] …. It will skip past theminute part because it already satisfies
the sensor blocks” and the other Scratcher replies again, helping to rewrite it.

Some groups of users interact repeatedly inways that create a sense of socialmomentum. These
users tend to interact across a given user’s projects in both an active and a sustained way. This
ongoing interaction is particularly important in leading to engagement and, eventually, to fixes
to code-based issues in projects. These users have lively comment streams, characterized by
reciprocity and lending support. The energy of the conversations seems to attract even more

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



Stage III: Social Situations and Commenting Culture 11

users. As these groups grow, participatory debugging practices flourish.

Although participatory debugging is not possible in the absence of other users, previous work
suggests that intense sociality and popularity can often be at oddswith subsequent engagement
(Gan et al., 2018) and learning (Brennan et al., 2010). Sustained communities of users often
amplify the visibility of members’ work by adding projects to user-curated galleries, leading to
an increase in project comments and the solidification of a sustained community.

Having a small group of users that cares about one another’s projects—the kind of users who
would undertake activities like placing each other’s projects in galleries—creates the potential
for commenting aimed at code-oriented problem solving. It is the presence of this shared com-
munity, and not necessarily the high number of comments, that most strongly contributes to
“figuring it out.” In fact, some of the most highly commented upon projects had neither evi-
dence of problem solving nor evidence of sustained group interaction. For example, projects
that were featured on Scratch’s homepage received many positive comments from many users,
and projects that were part of more topically focused fan groups had extensive commenting
histories—but these comment volumes didn’t support the emergence of participatory debug-
ging.

Identified Problems. Projects that have identified problems encourage substantive feedback
from other users. Substantive feedback contains information and insight, in contrast to the
more generic forms of praise (“cool project!” or “Nice work”) that fill the Comments space on
Scratch. Substantive feedbackoccurswhenusers commentdirectly about particular aspects of a
project or technique, involving phrases like “itwould be better if…” or “I think you should…” or
“you need to…” This feedback can either be unsolicited (i.e., a suggestion offered unprompted)
or in response to a question asking how a particular coding techniquemight be achieved. When
substantive feedback occurs, it tends to be more likely that a group of users will engage in par-
ticipatory debugging.

Substantive feedback is facilitated through a Scratcher’s ability to recognize problems within
projects. This is true of project creators who identify problems in their own projects and of
visitors who identify problems through their interactions with others’ projects. This can occur
when a creator indicates that something in their project isn’t working or a visitor states that
there’s a bug. Even when Scratchers do not have the expert language to specify what the prob-
lem is or how to solve it, the interactive nature of projects on Scratch allows other visitors to
experience the glitch for themselves and then view inside the project to investigate.

A key feature of Scratch is the ability to “remix” a project. Users turned to this feature to go
beyond textual explanations and to demonstrate how a project may be fixed. In the example
below, a project creator is attempting to build a script that would add viewers of the project
to a continually updated list. However, the project needs a block that draws on Scratch data
stored in the cloud—a feature that is only available tomore experienced Scratchers. The visitor
uses the remix function to demonstrate a workaround, “decoding” the functioning of the list
block:

P1: Hmmm...unfortunately, this won’t work because it isn’t a cloud list...I’ll post
an example on how youWOULDmake it work...:D

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



Stage III: Social Situations and Commenting Culture 12

CREATOR: oh. how do you make a cloud list? there isn’t any option to

P1: You can’t...yet. :P You have to use a system of decoding cloud variables to do
it...hold on...I’m almost done...:P

P1: Alright here it is

Scratch exemplifies a learning community that doesn’t require expertise to get expert help.

Rather, Scratchers can identify that something is wrong, and other Scratchers can use the social
features built into Scratch—such as viewing the inside of a project or remixing—to provide
substantive feedback.

Low Topic Density (“Topic Porousness”). Finally, it was clear from our user project history
data that neither the volume of users nor the presence of identified problems was a sure sign of
participatory debugging. Groups whose interactions are heavily focused on a particular topic
(such as role-playing games, Sailor Moon, or other fandoms) often have active, extensive com-
ment streams involving multiple users, but they don’t often exhibit computational thinking
practices. All or most interactions in these groups are focused on the topic of interest rather
than on improving the project. Furthermore, even when problem solving does occur (a user
asking for help, for example) it is drowned out by the presence of fan-related conversations.
The context and content of discussions matters in the quest for participatory debugging. For
example:

P5: the pictures dont go smooth enough, not enough images, it skips right from
the start to part way through.

P6: i love the melancholy of haruhi suzumiya

P7: I LUV THEMELANCHOLYOFHARUHI SUZUMIYA!!!

This discussion can be compared to more porous conversations, which are less focused on the
abstract theme of the game and have space for discussions about the game itself: how it works,
how it is played, and how it looks.

However, there is an implicit tension here. Involvement in fan sub-communities is a great way
to connect to other users, especially those who are highly active and have wide reaching net-
works that can be a resource for achieving the presence and sustained engagement of others.
However, the Scratchers who participate in these sub-communities utilize the commenting
space to “geek out.” When identifiable problems are introduced into these topic-dense social
spaces, they easily become lost in crowded conversations.

For this reason, we identify openness to broad conversation—what we refer to as “topic
porousness”—as being an essential aspect of participatory debugging. We use the term
porousnessmetaphorically: in the same way porous physical materials allow substances to easily
pass through them, porous topics are those that can easily become permeated with or joined by
other types of conversations. Rather than ameasure of the number of topics a group covers (an
idea like breadth), porousness describes a kind of openness and responsiveness of commenting
cultures. Porous commenting cultures are not so dense that new topics remain barricaded

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



13

from the flow of conversation. Porous conversations allow newly presented ideas to transform
the conversation at hand and become salient to other users. These commenting cultures
can contain not only discussions of fandom but also conversations about programming and
even, like many of the Scratch projects we read, heartfelt sharing of personal lives and beliefs.
These conversation spaces represent the highest hopes for constructivist learning scholars—as
meaningful worlds give rise to meaningful learning. Our analysis reveals that balancing
interest-driven engagement with incentives for learning is a core challenge on Scratch.

Discussion: Supporting Participatory Debugging

The results in Stage II suggest that participatory debugging is rare on Scratch. Our explana-
tion for the infrequency of participatory debugging is that each of the factors identified above
serve as essential, but insufficient, ingredients for the practice’s emergence. The presence of all
three of the factors—a sustained community, identified problems, and porous conversation—
arenecessary tomaximize thepossibility that Scratch’s social featureswill contribute to learning.
For example, we found many examples of commenting cultures with a sustained community
that never engaged in participatory debugging because they were missing one or both of the
other factors. A simple diagram is provided in Figure 1 to visualize all seven possible combina-
tions of the three factors. Although the richest opportunities for learning identified in our data
would be in the center of the diagram marked by the star, examples of all seven combinations
were present in our data. Commenting cultures with two of the three features (the numbered
areas in the figure) reflect the biggest opportunities for supporting participatory debugging,
and thus are the most productive sites for design interventions. Yet each combination presents
unique challenges. We discuss the three combinations in turn.

In Area 1, we found examples of commenting cultures that are characterized by a sustained
community and porous conversations. These are cultures that are highly social and porous
but where users never identified problems or asked for help. Despite listening ears and wide-
ranging interactions, they don’t collectively share knowledge to overcome problems. Groups
of users in this category have the greatest potential for participatory debugging in that their
openness and engagement mean that an attempt at problem solving will find fertile ground.
Designers of online communities like Scratch could promote learning by prompting creators
in these environments to reflect on their challenges publicly in order to initiate problem solving
in ongoing conversations.

In Area 2, we identified commenting cultures that have well-defined problems and porous con-
versations but lack a sustained community. Here, project creators are aware of problems and
open to fixing them, but there simply aren’t other Scratchers present to help them. Environ-
ments like Scratch can encourage learning by promoting connections among users in these sit-
uations. To engage in participatory debugging, users need to be able to find and attract users
who are willing and able to jointly seek a solution. A “needs help” tool that makes struggling
projects more widely visible—for example, collecting them into a “needs help” gallery—could
help build a sustained community for projects in these settings.

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



14

Figure 1: Figure 1. Venn diagram visualizing the relationship between the three social factors
that foster participatory debugging.

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



15

In Area 3, there are commenting cultures that have both sustained communities and identified
problems but had high topic density. When the topic is programming, these cultures contain
some of the most inspiring instances of participatory debugging. Here, communities of tech-
nically knowledgeable users come together to push one another to achieve and learn complex
coding routines. That said,most of the groups in our datasetwithhigh topic density ran the risk
of drowning out attempts at problem solving in favor of more thematic conversations based in
fandomor role playing. Although fandom sub-communities are their own kind of geeking out,
they aren’t generally geeking out about coding or computers. This does notmean that fandom-
focused Scratch sub-communities are not learning computational thinking concepts in order
to create and build fandom-oriented projects. In our data, however, they typically are not learn-
ing computational practices as part of their social interaction. Even when problem solving is
introduced as a topic, it is too easy to overlook because users focus on a more thematic conver-
sation. Although supporting participatory debugging in these contexts is challenging, a “needs
technical help” flag attached to comments focused on solving a problem could aid in bringing
attention to the identified problem and in breaking open dense conversations.

The tension between personal interests and more focused productive activity represents a
widely observed but previously under-theorized trade-off in participatory learning environ-
ments. Essential to constructionist modes of learning is a dedication to acquiring knowledge
for a “recognizable personal purpose” (Papert, 1980: 21). On Scratch, this means building
projects rather than rote memorization of programming concepts. Learning extends beyond
the impersonal and the abstract, becoming expressive and personally meaningful (Resnick,
Bruckman and Martin, 1996). Thematic interests in popular culture often motivate project
design and connect users in social communities. For example, in hermicro-analysis ofMOOSE
crossing, Bruckman identifies “significant shared interests” (in this case, Star Trek) as building
bonds between and strongly contributing to their integration into the community (p. 49).
The themes, stories, and content of projects are also especially important on Scratch (Kafai
and Burke, 2014: 114). In our analysis, projects that lack a sustained commenting culture
may be evidence of project creators who are not tapping into the power of interest-driven
communities. However, our analysis also suggests that the energy present in communities
that assemble around shared thematic interests needs to be balanced by tools that can aid in
programming-focused interactions.

While our analysis discusses the three factors as static ingredients of commenting cultures con-
ducive to participatory debugging, we found that they often exist as part of a complex network
of feedback loops. For example, identified problems could inspire sustained conversations as
groups of users repeatedly interact to test, iterate, and determine solutions to problems. Al-
ternatively, porous conversations that contain personal, interest-driven, and computationally
oriented topics could also promote a sustained community as users develop meaningful con-
nections to one another. As a result, we found that the rare confluence of the three factors
would often support participatory debugging not just once but repeatedly over time within a
given user’s projects. Although the presence of participatory debugging was relatively rare, it
can become a repeated feature of a user’s activity on Scratchwhen commenting cultures exhibit
these three features.

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



16

Conclusion

Glitches, bugs, and errors are natural parts of programming, but for individuals with en-
trenched negative beliefs about their abilities, these initial failures become proof that they
can’t do it (Papert, 1980). The impact of initial failure may be especially strong for groups
of people, such as girls, who are widely stereotyped as being inherently bad at math and
activities, like computing, associated with mathematical skills (Spencer, Steele, and Quinn,
1999). InMindstorms, Papert (1980) observes that only rare, exceptional events allow people
to overcome their deeply held notions about their own capabilities. Creating projects on
Scratch is an opportunity for these events. By studying the social process through which
users problem solve, we hope to better understand the spaces through which people learn to
overcome failure in the pursuit of learning.

Our project indicates that young people do indeed turn to their social resources in order to over-
come challenges and solve problems. That said, among the creators of these projects, we find
very different trajectories and many examples of users who do not develop and hone higher-
order computational thinking practices. A sustained community, identified problems, and
porous conversation are all important factors of participatory debugging. Supporting learn-
ing online requires that creators of such environments balance the social resources that exist in
interest-driven sub-communities with tools that can promote the learning of concepts and ana-
lytic thinking skills. The connected learning agenda seeks to link “deep vertical expertise” (like
that which exists in interest-driven communities) with practices that are recognized as a source
of professional opportunity (like programming) (Ito et al, 2013: 56). This link possesses what
Ito and her research partners (2018) identify as the as of yet unrealized potential of connected
learning (p. 170).

We hope that further researchwill show that the dynamics we have described extend far beyond
programming communities like Scratch. We believe that the participatory debugging practices
we identified are just one example of important forms of computer-mediated social problem-
solving practices enabled by new media. Although further work is necessary to establish the
generalizability of our findings, we believe that the social of participatory debugging are fea-
tures of healthy online problem-solving cultures more generally. We believe that our findings
and the framework we have identified will have parallels in a broad range of contexts engaged
in supporting connected learning. Our work shows that the literature on participatory media
is ready to move beyond discussions of whether youth socializing can or cannot lead to the
development of higher-order computational thinking skills. We present our work as a produc-
tive first step in asking what is required to effectively support and encourage both learning and
social interaction.

Acknowledgments

We would like to acknowledge and thank members of the Scratch online community for in-
spiring this work through their creative problem solving. We are deeply grateful to Sayamindu
whoworkedwith us to help construct the dataset used in this paper, offered pointers to relevant

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



17

work, and who provided feedback and support throughout the project. We would also like to
thank Mitchel Resnick, Natalie Rusk, and the editor and anonymous reviewers at New Me-
dia and Society for their thoughtful feedback and support. We presented early versions of this
research to theCommunityData ScienceCollective and the International CommunicationAs-
sociation’s section on Children, Adolescents and theMedia and are are grateful to members of
both groups for their valuable feedback and suggestions. Financial support for this work came
from the National Science Foundation (grants DRL-1417663 and DRL-1417952).

References

Aragon CR, Poon SS, Monroy-Hernández A, and Aragon D (2009) A tale of two online com-
munities: Fostering collaboration and creativity in scientists and children. Proceedings of the
SeventhACMConference onCreativity andCognition: 9–18. https://doi.org/10.1145/1640233.1640239

Begel A, DeLine R, and Zimmermann T (2010) Social media for software engineering.
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research: 33–38.
https://doi.org/10.1145/1882362.1882370

Brennan K, Monroy-Hernández A and Resnick, M (2010). Making projects, making friends:
Online community as catalyst for interactive media creation. New Directions for Youth Devel-
opment, 2010(128): 75–83. https://doi.org/10.1002/yd.377

Brennan K and ResnickM (2012). New frameworks for studying and assessing the development
of computational thinking. In: Educational Research Association, Vancouver, Canada.

Brennan K, Valverde A, Prempeh J, Roque R and Chung M (2011). More than code: The
significance of social interactions in young people’s development as interactive media creators. In:
ED-MEDIA, Lisbon, Portugal.

BruckmanA (1998)Community support for constructionist learning. Proceedings of theACM
Conference onComputer SupportedCooperativeWork,pp. 47–86. https://doi.org/10.1023/A:1008684120893

Dabbish, L, StuartC,Tsay J, andHerbsleb J (2012) Social coding inGitHub: Transparency and
collaboration in an open software repository. Proceedings of the ACM2012Conference on Com-
puter SupportedCooperativeWork, pp. 1277–1286. https://doi.org/10.1145/2145204.2145396

Dasgupta S, Hale W, Monroy-Hernández A, and Hill BM (2016) Remixing as a pathway to
computational thinking. Proceedings of the 2016 ACMConference on Computer-Supported Co-
operativeWork&SocialComputing, pp. 1438–1449. https://doi.org/10.1145/2818048.2819984

FieldsDA,PanticK,Kafai YB (2015) “I have a tutorial for this”: the language of online peer sup-
port in the scratch programming community. Proceedings of the 14th International Conference
on Interaction Design and Children, pp. 229-238. https://doi.org/10.1145/2771839.2771863

Gan EF, Hill BM and Dasgupta S. (2018). Gender, feedback, and learners’ decisions to share
their creative computing projects. Proceedings of the ACM Conference on Computer Supported
CooperativeWork, pp. 54:1–54:23. https://doi.org/10.1145/3274323

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



18

Glaser BG and Strauss AL (1967). The discovery of grounded theory: strategies for qualitative
research. Chicago: Aldine Publishing Company.

ItoM, Baumer S, Bittanti M, boyd d, Cody R, Herr-Stephenson B, Horst H, Lange P,Mahen-
ranD,Martínez K, Pascoe C, Perkel D, Robinson L, Sims C and Tripp L (2009b)Hanging out,
messing around, and geeking out: kids living and learning with new media. Cambridge, MA:
MIT Press.

Ito M, Gutiérrez K, Livingstone S, Penuel B, Rhodes J, Salen K., … Watkins SC (2013) Con-
nected learning. Irvine, CA: Digital Media and Learning Research Hub.

Ito M, Martin C, Pfister RC, Rafalow MH, Salen K and Wortman A (2018) Affinity online:
How connection and shared interest fuel learning. New York: NYU Press.

Jenkins H (2009) Confronting the challenges of participatory culture: media education for the
21st century. Cambridge, MA: TheMIT Press.

Kafai YB (2016, August) From computational thinking to computational participation in K–
12 education. Communications of the ACM, 59(8).

Kafai YB & Burke Q (2014) Connected code: Why children need to learn programming. Cam-
bridge, MA:MIT Press.

Kafai YB and Burke Q (2015) Constructionist gaming: Understanding the benefits of making
games for learning. EducationalPsychologist, 50(4): 313–334. https://doi.org/10.1080/00461520.2015.1124022

Lave J&Wenger E (1991) Situated learning: Legitimate peripheral participation (1st ed.) Cam-
bridge, England: Cambridge University Press.

LindlofTRandTaylorBC (2011)Qualitative communication researchmethods (3rd ed.) Thou-
sand Oaks, CA: SAGE.

Martin C and Steinkuehler C (2010) Collective information literacy in massively multiplayer
online games. E-LearningandDigitalMedia, 7 (4): 355–365. https://doi.org/10.2304/elea.2010.7.4.355

Monroy-Hernández, A. (2012). Designing for remixing: Supporting an online community of
amateur creators. Thesis, Massachusetts Institute of Technology, Cambridge, MA. Retrieved
from http://dspace.mit.edu/handle/1721.1/78202

Maxwell JA (2013) Qualitative research design: an interactive approach (3rd ed.). Thousand
Oaks, CA: SAGE.

Neuendorf, KA (2017) The content analysis guidebook (2nd ed.). Thousand Oaks, CA: SAGE.

Papert S (1976) Some poetic and social criteria for education design. Retrieved from
http://dspace.mit.edu/handle/1721.1/6250

Papert S (1980)Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic
Books.

Partnership for 21st Century Skills (2019) Framework for 21st century learning. Report. Re-
trieved from http://www.p21.org/about-us/p21-framework/260

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18



19

Resnick M, Bruckman A, &Martin F (1996) Pianos not stereos: creating computational con-
struction kits. Interactions, 3(5): 40–50.

Steinkuehler C andDuncan S (2008) Scientific habits of mind in virtual worlds. Journal of Sci-
ence Education and Technology, 17 (6): 530–543. https://doi.org/10.1007/s10956-008-9120-8

Spencer SJ, Steele CM and Quinn DM (1999). Stereotype threat and women’s math perfor-
mance. Journal of Experimental Social Psychology Journal of Experimental Social Psychology,
35(1): 4–28.

Wing JM (2006) Computational Thinking. Communications of the ACM, 49(3): 33–35.
https://doi.org/10.1145/1118178.1118215

Forthcoming inNewMedia and Society
Pre-print produced on 2020-04-18


	Introduction
	Background
	Socializing and Learning
	Empirical Setting: Scratch Online Community

	Data
	Project-Level Comment Data
	User Project History Comment Data

	Methodology
	Findings
	Stage I: Participatory Debugging Practices
	Stage II: How Common Is Participatory Debugging?
	Stage III: Social Situations and Commenting Culture

	Discussion: Supporting Participatory Debugging
	Conclusion
	Acknowledgments
	References

